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Abstract

With respect to autonomous driving, recent advances in the innovative application of robotics have
highlighted the importance of interaction between different actors, as robots are no longer confined
to specific environments such as factory floors, but face a complex world with many other actors.
Therefore, rational interaction between different actors is required to avoid conflicts. Autonomous
actors must take into account the decisions of other actors when making decisions themselves
(Zanardi et al., 2021c). In the present work, the approach adopted is to use discrete control
functions instead of continuous control functions as generally used in differential games and in
approaches of Zanardi et al. (2021c) and Mylvaganam et al. (2017). The reason for this is that in a
differential game with two or more players, the computation of Nash Equilibria is time consuming
and complex calculations have to be performed (Mylvaganam et al., 2017; Başar, 1986). For the
different discrete control variables of the discrete control functions, the reachability analysis was
used to define the different reachable states of the player, which also allows uncertainties for the
initial state and the strategies of the players to be taken into account. Based on the reachable states,
the cost for each player could be estimated and it is possible through the discrete control functions
to consider and solve games in normal form instead of the complex and time-consuming solution
process of differential games. Based on the defined reachable states, the individual costs for each
player were estimated. The reachability analysis also allows to take into account the uncertainties
in the initial state and in the strategy of the players. In order to be able to determine the costs for
each player, two groups of cost functions were defined in this work, one containing cost functions
that are intended to prevent collisions and the other containing running costs that take into account
the speed and comfort of the occupant. In addition, the worst cases were estimated for each pair of
controls included in the reachable states. Depending on the cost function, the cost functions were
optimized with respect to the maximum or minimum. As part of the nonlinear optimization of the
cost functions, optimization functions were defined in which the respective cost functions were
adjusted with respect to the worst case. These defined cost functions were simulated using three
defined driving scenarios, which include different driving maneuvers and evaluated with respect
to their relevance. The simulation results have generally shown that the defined cost functions
are reasonable and comprehensible cost functions that can be used in games with two players. A
cost function that calculates costs related to collisions energy in the event of a possible collision
did not provide the expected results due to the consideration of points as states. Since an exact
intersection of points is unlikely due to different parameters, complexity and defined uncertainties,
this is reflected in the simulation results. Further work could address this problem and consider
other geometric bodies instead of points, so that comprehensible results can be simulated.
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1. Introduction

In order to make the coexistence of different road users safe, conflict-free and efficient, corres-
ponding laws have been passed and guidelines have been drafted. Already in the first paragraph,
section 1 of one of these regulations, the Road Traffic Regulations, it is pointed out that those who
participate in road traffic should exercise uninterrupted caution as well as mutual consideration
(StVO, 2019). Failure to adapt in this case can lead to critical situations, which can cause a traffic
conflict (Lehsing, 2019). According to Kühnen (2000), a conflict is defined as two elements that
want to perform incompatible or opposing actions at the same time. Here, driving simulation
provides a method to explore and analyze traffic conflicts and driving behaviors that may be the
reason for these conflicts (Fisher et al., 2011). The occurrence of conflicts depends on many
parameters and influencing factors, which can also influence the severity of accidents. The large
number of parameters and influencing factors ensures the high complexity of the conflict, which
means that an exact prediction for the individually occurring conflicts requires a high effort and
can only be generalized under assumptions.

With respect to autonomous driving, recent advances in the innovative application of robotics
have highlighted the importance of interaction between actors, as robots are no longer merely
located in defined environments, such as factory floors, but are confronted with a complex world
with many other actors. Therefore, in order to avoid conflicts, rational interaction between actors is
necessary (Jafary et al., 2018). It is also necessary for autonomous actors to consider the decisions
of other actors when making decisions. For example, an autonomous vehicle should first consider
the decisions and actions of other road users before the autonomous vehicle itself plans its next
movements and actions based on them (Zanardi et al., 2021c). Initial work by Liniger and Lygeros
(2019), Spica et al. (2020), Wang et al. (2021) and Williams et al. (2018) has already investigated
autonomous racing scenarios where the actors’ only goal is to cross the finish line first. In the
context of this work, unlike racing scenarios, which are inherently counterproductive because they
lead to a zero-sum problem, we consider actors on everyday roads. The interactions of the actors
are decoupled from any constraints, in contrast to the racing scenarios.

In contrast to Zanardi et al. (2021c) and Mylvaganam et al. (2017), the education of Nash
Equilibria in differential games is not considered in the context of this work, since in a differential
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CHAPTER 1. INTRODUCTION

game with two or more players the computation of the Nash Equilibira is time consuming and
complex computations have to be performed, especially for nonlinear games (Mylvaganam et al.,
2017; Başar, 1986). Therefore, discrete control functions are used in this work instead of continuous
control functions as they are generally used in differential games. For the different discrete control
variables of the discrete control functions, reachability analysis is used to define the different
reachable states of the player. Reacha- bility analysis allows uncertainty to be taken into account.
Based on the reachable states, the cost for each player can be estimated. Here, a state is not
represented by a single vector, but by a geometric object. The reason for using geometric objects
instead of vectors is that uncertainties in the state can be taken into account. With the Continuous
Reachability Analyzer, one can basically take an initial set represented by a geometric object,
a system dynamics, and a time horizon, and calculate all the states that are reachable from the
initial state within the time horizon, given the system dynamics. Based on the discrete control
functions, it is possible to consider and solve games in normal form rather than the complex and
time-consuming solution process of differential games.

In Chapter 2, the theoretical foundations and the areas of Game Theory relevant to this work are
explained. This includes, among others, the distinction between static games in Chapter 2.1.1 and
extensive form games in Chapter 2.1.2 as well as the explanation of general-sum in Chapter 2.1.4
and zero-sum games in Chapter 2.1.3, cooperative and non-cooperative games in Chapter 2.1.5
and the explanation of differential games as part of dynamic games in Chapter 2.2. In Chapter 3
the current state of the art is explained, followed by the Methodological approach in Chapter 4. In
Chapter the normal form game is created based on the methodological approach. In addition to
the structure of the normal form game in Chapter 5.1, the scenarios are modeled in Chapter 5.2
before the cost functions for the normal form game are defined in the following Chapters 5.5, 5.3
and 5.5. The results for the agents of the game resulting from the normal form game are evaluated
in Chapter 6 for the cost functions and in Chapter 7. Finally, the Chapter 8 gives an overview of
the obtained knowledge as well as results of this work and gives an outlook on what future work
could deal with.
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2. Preliminaries

This Chapter serves as a theoretical foundation and understanding of this work. The Chapter 2.1
gives a general introduction to Game Theory, its different strategy possibilities and provides a
general definition of a game. Furthermore, the Chapter 2.1.1 characterizes the properties of a static
form game and also defines important terms of Game Theory such as Nash Equilibrium and best
response. The Chapter 2.1.2 explains the extensive form games with their representation form of
the game tree and the essential differences to the static form game. A further distinction within the
Game Theory of zero- and general-sum games is made in Chapter 2.1.3 and Chapter 2.1.4. Chapter
2.1.5 further explains the difference between cooperative and non-cooperative games, whereupon
Chapter 2.1.6 explains the distinctions and effects of information in games. Finally, Chapter 2.2
defines differential games as part of dynamic games.

2.1. Introduction to Game Theory

Game Theory is a mathematical theory concerned with the study of strategic decision making
among players, who are often called agents (Zanardi et al., 2021a). The decision situations
modeled by Game Theory are intended to help understand the phenomena that can be observed
when players interact.

Definition 2.1.1 Let i be a game-theoretical designation for a player and a set of players i are

defined as N = (1, ...,n). A player here can be an individual or a group of individuals (Holler

et al., 2019).

The models of Game Theory are abstract representations of real-world situations that, because of
their abstractness, can study a wide range of phenomena (Osborne and Rubinstein, 1994; Haurie
and Krawczyk, 2000). Thus, Game Theory provides a concept for analyzing game situations
and formalizes the extent to which players form their expectations about the behavior of fellow
players or react to the actions of fellow players and make the individual action. This formation
of expectations and the comprehension of the decisions of the fellow players are central starting
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CHAPTER 2. PRELIMINARIES

points of Game Theory (Holler et al., 2019). Within a game, players execute multiple moves. Thus,
the overall progression of a game results from the sequence of moves executed by all players.

Definition 2.1.2 A decision or a move is defined as the executed action of a player i. A move is a

single decision made by a player i at a particular time in the game (Winter, 2019).

Borrowing the term from control theory, a move is also understood to be the realization of a
player’s control (Haurie and Krawczyk, 2000; Winter, 2019).

Definition 2.1.3 By the term strategy si of a player i we understand a complete game plan for the

entire game (Winter, 2019).

Colloquially, the term strategy is often used in the context of long-term planning and smart
decisions. In contrast, in Game Theory, strategy is referred to as the complete game plan for an
entire game, completely independent of whether the game plan is good or bad. The task of Game
Theory here is to distinguish the good strategies from the bad ones. A complete game plan, in terms
of a player’s game plan, means that for every decision problem that the player may face during a
game, the player will find an action to be performed in the game plan. This complete game plan
ensures that the player is prepared for all eventualities and that no situations can arise in which the
player cannot apply the game plan (Winter, 2019; Holler et al., 2019). A game theoretic situation
only becomes a decision problem for a player if the player has several strategies at the players
disposal and thus has several possibilities to set up a game plan. To analyze a game theoretic
situation it is therefore essential to determine the best strategy for the individual player. For this
purpose, the set of all available strategies of a player is examined (Winter, 2019).

Definition 2.1.4 The set of all available strategies si of a player i is called the individual strategy

set Si. From this strategy set Si = (s1, ...,si, ...,sn), the player i can choose between different

strategies si ∈ Si (Holler et al., 2019).

The rules of a game are indirectly captured and specified by the strategy set Si (Holler et al.,
2019). Provided that a player chooses exactly one strategy from the players individual strategy set,
the player chooses a pure strategy.

Definition 2.1.5 A pure strategy gives a complete definition of how a player will play a game. In

particular, it determines the move a player will make in every possible situation (Holler et al.,

2019).
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A pure strategy is often chosen with access to information available to a player at the time of the
move. However, if the player uses a random mechanism to decide between pure strategies, then
the player randomizes and chooses the so-called mixed strategy (Holler et al., 2019).

Definition 2.1.6 A mixed strategy is a probability distribution that assigns to each available action

a likelihood of being selected. If only one action has a positive probability of being selected, the

player is said to use a pure strategy (Holler et al., 2019).

Another way to choose a strategy is the behavioral strategy. This defines a random execution of
an admissible move from the strategy set depending on available information. According to Kuhn
and Tucker (1953), this strategy is closely related to mixed strategies and consequently for many
games the concepts of mixed strategy and behavioral strategy coincide (Haurie and Krawczyk,
2000). To the extent that a player succeeds in choosing a strategy that is the best response to all the
strategies of the other players that are possible at all, that player is playing a dominant strategy.

Definition 2.1.7 A strategy is dominant if the payoffs a player can achieve with this strategy are

basically higher than the payouts the player can achieve with any other of the players strategies,

regardless of what actions the other players perform (Winter, 2019).

Since the dominant strategy is a player’s best possible strategy, it is understandable that this is
precisely the strategy that should be chosen. Assuming that a player’s strategy s1 leads to a lower
payoff than the player’s strategy s2 in every case, strategy s1 is dominated by strategy s2. Since
the player with strategy s2 has a strategy that dominates the other strategy s1, there is no rational
understandable reason for the player with strategy s1 to continue to consider strategy s1 (Winter,
2019). For this reason, a basic assumption of Game Theory is that players pursue defined rational
goals and strategically adjust their knowledge and expectations to the behavior of other players.

Definition 2.1.8 Rational choice theory states that individual players make rational calculations

to make rational decisions and achieve outcomes that are consistent with their own personal goals.

These outcomes are also associated with maximizing a player’s self-interest. It is expected that the

application of rational choice theory will lead to outcomes that provide the greatest utility and

satisfaction to players given the limited options available to them. The personal goals of the

players are not subject to qualitative (Osborne et al., 2004).

Because each player i selects a strategy si that represents a complete game plan, the combination
of one strategy per player results in a complete game plan for the respective game situation.
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Definition 2.1.9 If the strategy sets Si from Definition 2.1.4 of all players i are combined, the

strategy space S of the game is obtained. The strategy space S = S1 × ...×Si × ...×Sn of an entire

game is the Cartesian product of the strategy sets Si of the individual players i (Winter, 2019).

Provided that the players of a game situation can decide between pure and mixed strategies, the
strategy space is represented according to the Definition 2.1.10.

Definition 2.1.10 Let the strategy space for game situations with pure or mixed strategies be

Σ = Σ1 ×Σ2 × ...×Σn and the strategy set available to each individual player i defined as σ =

(σ1,σ2, ...σn) with σi ∈ Σi and represented (Holler et al., 2019).

The decisions in game situations, which a player makes on the basis of his strategy, are made
under a certain uncertainty, since the player in most cases does not know which decisions the other
players will make. Especially in simultaneous games, it becomes clear that it is not possible for
the players to make their own decision depending on the decisions of the other players. Therefore,
an essential aspect of Game Theory is that for these game situations the expectations of the players
are analyzed and, if this is possible, strategic considerations can also be derived from them (Holler
et al., 2019). The course of each game is therefore determined by a strategy set and thus also has an
influence on the outcome of the game. The outcome of the game has consequences for each player,
which can be evaluated both positively and negatively with numbers. The higher the number, the
better the outcome of the game is evaluated by the respective player, because the players wants to
maximize their rewards (Winter, 2019).

Definition 2.1.11 Let payoffs J be the numbers, which evaluate the consequences of a game from

the point of view of each player. In the context of Game Theory, the payoffs of an individual player

are real numbers that contain the desirability of the possible outcomes of the game (Zanardi et al.,

2021a; Haurie and Krawczyk, 2000).

A general example from economics for payoffs is the amount of money a player can win or lose.
Each player’s payoff depends, among other things, on the actions of other players, so a rational
decision by an individual player cannot be made without considering the other players (Zanardi
et al., 2021a; Haurie and Krawczyk, 2000). Each player pursues the goal of maximizing his profit
by playing a game whose objective function is called utility or reward, or minimizing it whose
objective function is defined as cost function or loss (Zanardi et al., 2021a).

Definition 2.1.12 If a certain strategy si of a player i is played in a game situation, the payoff

function Ji(s) results for this player i, which defines the payoff Ji depending on the strategy si

Holler et al. (2019).
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In the context of this work, the payoffs Ji for each player i are formed considering the current
states of the player i and their strategy si. The outcome of solving a game is to determine each
player’s strategy. The solver of a game tries to determine the expected sets of strategies and ideally
instructs each player which strategy to choose. This is only possible if the players can rank the
various events according to their preferences.

Based on the Definitions in this Chapter a game can be defined in general Game Theory according
to Theorem 2.1.1.

Theorem 2.1.1 A game is defined as Γ = (N,S,J) is described by

• the set of players i N = {1, ...,n},

• the strategy set Si = (s1, ...,si, ...,sn) for each player i with si j ∈ Si the j-th strategy of player

i,

• the strategy space S = S1 × ...× Si × ...× Sn, which gives the set of all possible strategy

combinations s = (s1, ...,si, ...,sn) from each player’s strategies such that si ∈ Si holds and

• the payoff functions J = (J1, ...,Jn). The payoff here is defined for player i as Ji(s), provided

that the strategy s is played.

To illustrate the basic concept of Game Theory with an example, the decision problem is
explained in more detail below using the Figure 2.1. In this maneuver, two players, vehicle 1
and vehicle 2, travel side by side on a two-lane highway. The set of the players can therefore be
defined as N = {1,2}. On the right lane, a blue obstacle is approaching in the direction of travel
of the two vehicles. Player 1 has two decision selection strategies in this example and can choose
the strategy s11 = (remain) to stay on the lane and the strategy s21 = (switch) to swerve to the
edge of the lane. The player 2 also has two strategies to choose from. First, the player can choose
the strategy to stay on the lane s12 = (remain), and second, the player can switch to the left lane
s22 = (switch). Of course, the given strategies are only a selection to illustrate this example.

These strategies thus give the strategy sets S1 = {s11,s21} for player 1 and S2 = {s12,s22} for
player 2. The two players must make a decision simultaneously without knowing which decision
the other player has chosen. This procedure is called simultaneous or static games and is explained
in more detail in Chapter 2.1.1. The result of each match is described by the cost, which includes
the damage of each player. Figure 2.1 describes for each of the four situations the payoff function
Ji(s) for the player 1 with J1(s) and for the player 2 with J2(s). As an example, the first situation,
which is visualized on the left in Figure 2.1, is explained below. Assuming that both players choose
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Figure 2.1.: Schematic representation of a decision problem to illustrate the basic concept of Game
Theory

the strategy of staying on the lane, i.e. s11 and s12 are played, the payoff J1 = {s11,s12} results in
0 cost for player 1 when this strategy combination is played. The cost arises because the player 1
follows the lane and does not leave the lane, and also the player 2 does not drive into the lane of
player 1. In contrast, the payoff of player 2 is J2 = {s11,s12}, when this strategy combination is
played, incurs a cost of -50. Since both players 1 and 2 stay in their lane, only player 2 incurs a
negative cost because he collides with the blue obstacle.

2.1.1. Static form games

The representation form of a game by the tuple Γ = (N,S,J) is also called strategic form or static
form (Hart, 1992).

Definition 2.1.13 A static form game is a model of interacting decision makers for a static game

in which all decision makers, usually referred to as players, and generally unaware of the actions

of the other players, simultaneously choose their action (Ozdaglar, 2015; Osborne and Rubinstein,

1994).

This model assumes not only that all players act simultaneously, but also that players have only
one turn, so that each player performs only one action (Winter, 2019). In general, static form
games are represented in a matrix form and are defined by the fact that players cannot observe the
actions of other players before performing their own actions because players act simultaneously
(Holler et al., 2019). Since players choose their actions only once and players perform their actions
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simultaneously, so that no player can choose the action depending on the actions of the other
players, time does not matter in static form games (Osborne and Rubinstein, 1994). Moreover,
in static form games, the availability of information plays a crucial role in the outcome of the
game and the payoff that each player receives. Therefore, in simultaneous games, complete and
incomplete information is available and both the rules of the game and the payoff of the players
are known to the fellow players (Holler et al., 2019). The possibilities of information in games are
explained in Chapter 2.1.6.

In static form games with complete information, all players know exactly their own payoffs and
the payoffs of all other players, as well as all possible outcomes associated with them. Thus, the
other players are able to take the perspective of any other player and analyze the game from that
player’s point of view. In a static form game with complete information, a player can assume
that not only the player himself, but also all the other players collectively know the player’s best
strategy and that the player will choose it to achieve the best possible payoff. In static form games
with incomplete information, players know their own payoffs, but not all players know the payoffs
of the other players and all possible outcomes. Accordingly, it is not possible for the players
to take the other players’ perspective exactly, so they cannot be absolutely sure what actions the
other players will take. Therefore, the behavior of the other players is random to some extent.
Therefore, the analysis of static form games with incomplete information tries to determine how
players should deal with these random strategies of their fellow players (Winter, 2019).

In Figure 2.1 a static form game has already been introduced in which the players 1 and 2 execute
their actions simultaneously. Within a static form game, the strategy space is often represented in
the form of a matrix. Considering the strategy sets S1 = {s11,s21} for player 1 and S2 = {s12,s22}
for player 2, the Cartesian product of the two strategy sets is the following strategy space S for the
two players 1 and 2:

S =

s12 s22[ ]
(s11,s12) (s11,s22) s11

(s21,s12) (s21,s22) s21

The payoff combinations of the example on Figure 2.1, which result from the strategy sets of
the two players 1 and 2, can also be expressed in the form of a matrix for a static form game:
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S =

s12 s22[ ]
(0,−50) (−200,−200) s11

(−20,−50) (−20,0) s21

From this matrix, all possible costs of the possible payoff combinations for the two players 1
and 2 can be derived. Furthermore, this matrix allows to determine a Nash Equilibrium (NE).

Definition 2.1.14 A strategy combination is a Nash Equilibrium (NE) if for each player i and each

strategy si of the player i, s is at least as good as the strategy combination (si1,si2) according to the

preferences of player i, where player i chooses strategy si while the other player j chooses strategy

a j. Equivalently, for every player i,

Ji(s)≥ Ji(si,s−i)

where Ji is a payoff function that represents player i’s preferences (Osborne and Rubinstein, 1994).

A NE represents a situation in which each player maximizes the expected payoff given the
actions of the other players (Myerson, 1984) and in which each has no incentive to deviate from
the current strategy. Moreover, the NE describes the best payoff that each player could expect
if they all behaved rationally (Zanardi et al., 2021a). Provided that player W expects player 2 to
behave rationally and therefore chooses the NE strategy, it is best for player 1 to also choose the NE
strategy (Jørgensen and Zaccour, 2003). In Game Theory, the concept of NE is an essential concept
for analyzing the outcomes of strategic interactions between two or more players (Ramachandran
and Tsokos, 2012). Due to the different interests of the players, not all players may prefer the same
strategy combination and accordingly prefer a different combination (Winter, 2019). According to
Definition 2.1.14, an optimal strategy combination represents a situation in which no player in a
game has an incentive to deviate from the chosen strategy.

Definition 2.1.15 The best answer is the strategy of a player that ensures the player at least the

same or a higher payoff against the given strategies of his other players (Winter, 2019). We denote

by Ri(s−i) the set of actions that yield the best possible outcome to player i, when the other players

play strategies s−i (Zanardi et al., 2021a):

Ri(s−i) = argmax Ji(si,s−i)

Considering the example from Figure 2.1, the best responses according to Definition 2.1.15 can
be defined for player 1 and player 2. The best responses for player 1 to the strategies of player 2
are the following:
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• If 2 chooses strategy s12, the best response of 1 is to choose strategy s11.

• If 2 chooses strategy s22, the best response of 1 is to choose strategy s21.

The best responses for player 2 to player 1’s strategies are as follows:

• If 1 chooses strategy s11, the best response of 2 is to choose strategy s12.

• If 1 chooses strategy s21, the best response of 2 is to choose strategy s22.

From the matrix of the example in Figure 2.1 and based on the defined best responses for each
player, two NE can be identified. Both the strategy combination {s11,s12} with outcome (0, -50)
and the strategy combination {s21,s22} with outcome (-20, 0) are NE for both players 1 and 2 in
this example, since neither player would choose a different strategy after the fact, as their payoffs
would worsen or remain the same.

2.1.2. Extensive form games

In Game Theory, besides static games, there are also dynamic games with sequential structure. A
strategy then consists of the definition of a certain sequence of moves, in which individual moves
are often planned in dependence on preceding actions of the other players. This allows the players
who move later to take into account the current state of the game when choosing their actions.
For this reason, the strategies of these players are defined at the beginning of the game taking into
account if-then instructions (Winter, 2019; Holler et al., 2019). In Chapter 2.1.1 it has already
been explained that the static form of a game is generally best represented in the form of a matrix.
While representing dynamic sequential games in the form of a matrix is possible and useful for
some analysis, representing a game in a matrix does not take into account the timing of a game
and, furthermore, can only take into account two players at a time in the form of a player or team
(Zanardi et al., 2021a).

Definition 2.1.16 Let a game in extensive form be a specification of a game in Game Theory that

allows an representation of the sequence of possible moves of all players, their decisions at each

decision point, the information each player has about the moves of the other player when the

player makes a decision, and the players payoffs for all possible game outcomes (Osborne and

Rubinstein, 1994).

In the extensive form of a sequential game, in contrast to the representation in a matrix, the
strategic interaction can be specified more precisely, in that the extensive form represents what
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actions the individual player performs at a particular time in the game and what information
the player has at that time. A game in extensive form, which is a convenient representation of
multilevel games (Zanardi et al., 2021a), can be conveniently represented by a game tree. The
game tree is a generalization of a decision tree for multiple players (Kockesen and Ok, 2007).

Theorem 2.1.2 Let a game tree G = (V,E) be a graph in which V represent the vertices and E

represent the edges. V is partitioned among players such that Vi ⊂ V are the vertices in which

player i decides and V =V1∪V2∪ ...∪Vn holds. An edge represents a vertex which has no vertices

as successors. Edges are labeled to indicate which action has been chosen by which player at this

point.

A game tree, as visualized by the Figure 2.2, evolves from the root of the tree on the left to
the leaves of the tree on the right. Each vertex of the tree corresponds to the point at which the
player must decide which action to choose. Accordingly, the edges between the vertices represent
the possible moves of the individual player whose turn it is. Vertices represent situations within
a game in which players must decide on an action or choose a strategy. Accordingly, vertices are
labeled with the name of the player whose turn it is at that moment. The root as the beginning of
the game tree is called the initial vertex and is to be distinguished from the other vertices. Formally,
this difference is expressed by representing the initial vertex as an open circle. All other decision
vertices are represented as closed circles. In contrast, end vertices represent the end of the game,
so that no player performs another action. Behind each end vertex, a payoff vector is created that
contains the payoffs for the players of the sequential game, so that it can be read directly which
entries of the payoff vector the respective players will receive when reaching the end vertex. The
order of payoffs here correspond to the order in which the players chose their action. Starting from
each decision vertices, the edges of the tree connect the decision vertices or end vertices with each
other. Each edge represents an action that the player can choose at a decision vertex. Each edge
is further labeled with the action it represents (Kockesen and Ok, 2007). As explained earlier, the
game proceeds in time from initial vertices on the left to final vertices on the right. Thus, decision
vertices that lie on top of each other belong to the same point in time and to the same player. For
this reason, especially in more complex sequential games, it makes sense to number and label the
decision and end vertices and to include them in the representation of the game tree (see Figure
2.2) (Winter, 2019).

To explain extensive form games, we again use the example from Figure 2.1. In the context of
extensive form games, players act sequentially rather than simultaneously. In this example, both
players 1 and 2 have perfect and complete information (cf. Chapter 2.1.6). Player 2 starts and
executes the first action. The player can choose the strategy s21 = (remain) to stay in the lane and
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Figure 2.2.: Game tree of an extensive form game for the example from Figure 2.1

the strategy s22 = (switch) to switch to the left lane. This results in the following strategy space
for player 2:

S2 = (s12,s22) = (remain,switch) (2.1)

At the beginning of the game, player 1 has the possibility to choose from four different strategies.
These strategies take into account that player 1 has no information about the other player’s action.
One option for player 1 is to always stay in lane s11 = (remain,remain) regardless of which
strategy player 2 chooses. Also independent of the strategy of player 2 is the second strategy
s12 = (switch,switch) of player 1, where the player always chooses to leave the lane to the left.
In the third strategy s13 = (remain,switch), player 1 leaves the lane only when player 2 switches
to the left lane, so this strategy depends on the previous action of player 2. Also, the strategy
s14 = (switch,remain) depends on the previous action of player 2, since it implies that player 1
switches lanes only if player 2 stays in the lane. These four strategies form the following strategy
space S1 for player 1:
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S1 = {s11,s21,s31,s41} (2.2)

The formulated game as an extensive form game is visualized in the form of a decision tree in
the Figure 2.2, in which player 2 must make a decision at the red vertex N1 and player 1 must
make decisions at the white vertices N2 and N3. Taking the payoff functions and their real values
from the example in the context of Figure 2.1, the payoff functions of the extensive-form game can
be represented in a matrix. This matrix is spanned in the rows by the strategies of player 2 and in
the columns by the strategies of player 1.

S =

s11 s21 s31 s41[ ]
(−50,0) (−50,−20) (−50,0) (−50,−20) s12

(−200,−200) (0,−20) (0,−20) (−200,−200) s22

As with the static form games in Chapter 2.1.1, the best answers for the extensive form games
can be defined according to Definition 2.1.15 for player 1 and player 2. Since player 2 acts first,
the best response for the player in this example is to choose the strategy s22, since this allows
the player to avoid a collision with the obstacle. The best responses that player 1 can give to the
strategies of player 2 in this game are the following:

• If player 2 chooses strategy s12 =(remain), the best response of player 1 is to choose strategy
s11 or strategy s31.

• If player 2 chooses strategy s22 = (switch), the best response of player 1 is to choose strategy
s21 or strategy s31.

The definition of the best answers for the two players can be understood using the matrix for
this game. Based on the defined best responses for each player, two NE can be identified. Both the
strategy combination SC1 = {s21,s22} with the outcome of (0, -20) and the strategy combination
SC2 = {s31,s22} with the same outcome of (0, -20) are NE for both players 1 and 2 in this example,
since neither player would choose a different strategy in hindsight as their payoffs would worsen
or remain the same. However, the strategy combination SC1 is not credibly tractable because, from
a rational point of view, player 1 has no interest in choosing strategy s12 = (switch,switch) in
this example. It makes no sense from the point of view of player 1 to switch to the roadside, and
negative costs are incurred if player 2 does not switch. Therefore, only the strategy combination
SC2 can be considered a plausible NE and outcome of the extensive form game.
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Game trees, by their basic illustration of the dynamic structure of the game, provide a simple
way to express games in detail and to analyze them (Gibbons et al., 1992). Moreover, the order of
the sequence of moves is particularly emphasized by the representation with a game tree. However,
a disadvantage of representing games by game trees is that the size of the game tree can quickly
become large even for simple games. By the example of a chess game it becomes clear that
a complete description of a chess game by the extensive form will be hardly presentable in its
complexity due to the multiplicity of possibilities (Haurie and Krawczyk, 2000). In addition, the
matrix representation is better at identifying equilibria than the game tree representation. However,
the matrix representation is limited to two players, whereas the game tree representation is not
(Winter, 2019).

2.1.3. Zero-sum game

Theorem 2.1.3 Zero-sum games describe situations and game events in which the sum of the

payoff of all players is equal to zero, whereby the payoffs balance out accordingly (Ferguson,

2014). A zero-sum game is a 2-player game in which (Zanardi et al., 2021a):

J1(s1,s2) =−J2(s1,s2), ∀s ∈ Γ

According to Theorem 2.1.3, any gain in payoff by one player simultaneously leads to a loss
in payoff by the other player (Ferguson, 2014). Zero-sum games, such as races, like Figure 2.3,
are therefore inherently counterproductive and are generally indicated by a single outcome of the
game. Accor-ding to Zanardi et al. (2021a), several practical constellations exist in which the
structure of zero-sum games is justified. On the one side, the already explained game situation in
which the players compete against each other and which therefore end with a winner and a loser.
On the other side, game situations in which nature represents the adversary in order to achieve
robustness of the player decision against worst case scenarios. An example of this is the Liniger
and Van Gool (2020) formulation of the curvature of a road that a vehicle is driving towards,
which is considered an adversarial action of the vehicle. An example of conversion to equivalent
zero-sum games are safety games, as formulated by Korzhyk et al. (2011).

If a zero-sum game is a finite game, it can be formulated as a matrix game (Ferguson, 2014)
and if it is a two-person game, a single matrix can be used due to the zero-sum formation, so that
zero-sum games are generally also called single-matrix-games (Kuhn, 2009). In the following, the
Theorem 2.1.3 will be explained by means of a race example. For this purpose, as in the example
from Figure 2.1 before, the two players 1 and 2 are modeled as vehicles. The two players have
the possibility to choose two possible strategies for the race, which are shown in the matrix below.
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Figure 2.3.: Representation of a zero-sum game using the example of a race Zanardi et al. (2021b)

Each row represents one of the two strategies s1 = (s11,s21) that player 1 can choose and each
column represents one of the two strategies s2 = (s12,s22) that player 2 can choose. As can be seen
from the matrix, the sum of the payoffs of both players under the condition of having chosen one
of the two strategies is always zero, since J1(s) =−J2(s) holds.

S =

s12 s22[ ]
(1,−1) (−1,1) s11

(−1,1) (1,−1) s21

Since players in zero-sum games pursue opposite preferences, such as winning a race, there is
no interest for players to act as a coalition. It can be concluded that zero-sum games are non-
cooperative games (see Chapter 2.1.5) and therefore each player must choose his strategies and
actions in uncertainty about the opponent’s behavior (Bacharach, 1989). In addition to modeling
for two players, a zero-sum game can also be modeled for two teams (see Chapter 2.1.5). In this
game, the players are divided into group A and group B and the payoff depends on the actions
of the players from the teams and is positive for each player from group A in the case of a win,
so correspondingly the payoff of each player from group B is negative due to the loss. Provided
there is perfect coordination within a group, this zero-sum interaction between two groups is in
principle nothing more than a zero-sum interaction between two players (Schulman and Vazirani,
2017). This principle can be applied to the Figure 2.3, since in this example only one team can
emerge as the winner of a race.
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2.1.4. General-sum game

Zero-sum games from Chapter 2.1.3 contrast with general-sum games, such as city traffic, which
generally do not form zero-sums due to the complexity caused by the variety of individual vehicles
and strategies. Zero-sum games, such as the racing scenario in Figure 2.3, furthermore do not take
into account the description of the interaction between multiple players within a system. Using
an everyday traffic situation as an example, it is clear that players have coupled goals, such as
avoiding collisions or maintaining a safe distance, in addition to their personal goals, such as the
destination or travel time (Zanardi et al., 2021a). Since these goals usually do not sum to zero,
these games are called general-sum games or bimatrix games.

Definition 2.1.17 The bimatrix game is a two-player game in normal form, where

• player 1 has a finite strategy set S1 = {s11s21...sn1},

• player 2 has a finite strategy set S2 = {s12s22...sm2},

• when the strategy combination (si1,s j2) is chosen, the payoff for player 2 is J2(si1,s j2) ∈ R
and the payoff for player 1 is J1(si1,s j2) ∈ R (Gokulraj and Chandrashekaran, 2021).

The values of payoff functions can be described by a bimatrix:

s11 s21 ... sn1


(a11,b11) (a12,b12) ... (a1n,b1n) s12

(a21,b21) (a22,b22) ... (a2n,b2n) s22

... ... ... ... ...

(am1,bm1) (am2,bm2) ... (amn,bmn) sm2

The values of the payoff functions can be specified separately for specific players, where matrix
W is called the payoff matrix for player 1 and matrix R is called the payoff matrix for player 2.

W =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

am1 am2 ... amn
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R =




b11 b12 ... b1n

b21 b22 ... b2n

... ... ... ...

bm1 bm2 ... bmn

A special case of this type of game is the so-called win-win game. Here all players can win at
the same time. As the Figure 2.4 shows, this outcome is not automatically the case, so that other
outcomes of the game are also possible in which only one player wins the game.

Figure 2.4.: Schematic illustrating zero-sum, general-sum and win-win games

2.1.5. Cooperative and non-cooperative games

Game Theory distinguishes, among other things, between the two basic types of cooperative and
non-cooperative games.

Definition 2.1.18 A cooperative game is a game with competition between groups of players,

named coalitions, due to the possibility of external enforcement of cooperative behavior (Khan

and Ahmad, 2006).

Cooperative games, because of their game structure, allow players to communicate and plan
as a group before choosing their next action. In contrast, this possibility is not present in non-
cooperative games (Nash, 1950; Khan and Ahmad, 2006). Thus, in Game Theory, an important
distinction is based on the ability of players to enter into a cooperative agreement or not. In a
cooperation agreement, decision making is done collectively so that each player receives a profit
to the maximum extent possible. This is done without creating inefficiencies within a game system.
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The theory that deals with, among other things, coalition building or bargaining issues is defined
as cooperative Game Theory (Zanardi et al., 2021a). As already explained, non-cooperative Game
Theory is the counterpart to cooperative Game Theory.

Definition 2.1.19 In non-cooperative games, each player acts independently without cooperation

or communication with the other participants and makes decisions individually based on the

information available to the player (Nash, 1951).

The player carries out the decision process until he has no incentive to change the decision
he has made (Nash, 1951; Zanardi et al., 2021a). Provided there is no incentive to change the
decision made by the players in a game, equilibrium is reached. According to Nash (1950), for
games with a finite number of available actions, there is always at least one NE (Zanardi et al.,
2021a). However, a non-cooperative game cannot always be solved, so only partial solutions exist.
These possess many properties of solutions, but in contrast are not unique. However, if a solution
for non-cooperative games exists, it is unique (Nash, 1951).

Cooperative games, which are also called coalition games, have a collection of common action
sets that each coalition, which is a group of players, can perform independently of the other
remaining players. The forming specification of the coalition and the common action that a
coalition performs are the outcomes of a coalition game. Furthermore, the theory of cooperative
games is based on the preferences of individual players, even when the actions are performed
as a coalition. A solution concept for coalition games assigns to each game a set of outcomes
with which the players of a coalition game come to terms, so that they exhibit some stability. By
satisfying the stability requirement, outcomes are generally immune to deviation by a particular
type of group of players. Solutions of non-cooperative games, in contrast, require immunity to
deviation by individual players (Osborne and Rubinstein, 1994).

The difference between a cooperative model and a non-cooperative model is that the focus is
not on the potential of the individual players, but on the potential that the players in a group can
achieve. If coalition formation is modeled within a non-cooperative game, it is necessary to specify
to what extent coalitions form and to what extent coalition members can choose common actions,
since this information is missing in a cooperative game, so that the outcome of a cooperative game
does not depend on (Osborne and Rubinstein, 1994).

Based on the schematic representation of a decision situation visualized in Figure 2.1 in the
Chapter 2.1.6, the differences between the two modeling approaches of Definition 2.1.18 and
Definition 2.1.19 of cooperative and non-cooperative games shall be explained. Both players want
to reach their individually defined destination without collision. Due to the obstacle in the lane of
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player 2, the player is forced to change lanes to the left. Each of the players has information to
perform their own individual driving task to a specific destination, which includes driving in the
left lane past the obstacle. However, the information of a single player is not enough to reach the
defined destination without collision. Only with the information of the other player a collision-free
handling of the driving task is possible. To ensure that both vehicles reach their destination without
collision, the vehicles must cooperate with each other. In the case of a non-cooperative game
model, the situation determines exactly what actions each player can perform. For example, in this
situation, each player can provide its information for a consideration, such as a certain price, so that
this information can be purchased and each individual player can reach its destination collision-free
by purchasing the information. A coalition model, on the other hand, assumes the set of payoff
vectors that a group of players can collectively achieve. Here, a coalition can establish binding
agreements to ensure a collision-free driving task. As the explained situation in this Chapter
shows, cooperative and non-cooperative play formulate the different types of strategic thinking
and contribute to the understanding of strategic thinking (Osborne and Rubinstein, 1994).

2.1.6. Possibilities of information in games

The information structure of a game indicates to what extent the individual players of a game have
certain information at their disposal. It distinguishes between the information that the individual
player has at the beginning of the game and the information that the player has during the players
moves. Information at the beginning of a game can be divided into complete and incomplete
information.

If a player has complete information, the player knows which other players are playing this
game, which actions are available to these players and to the player himself and which results
are possible with these actions for each individual player (Haurie and Krawczyk, 2000). Here,
the player is fully informed about all relevant characteristics of the fellow players, so that no
other player has private information about individual characteristics. Thus, under the conditions
of a game with complete information, a player can determine the optimal actions of the other
players without observing the players’ moves, making the analysis of such a game relatively easy.
Moreover, the example of a card game shows that some aspects of real games are not considered in
games with complete information, since uncertainty about the cards of the fellow players is a part
of many card games. A game by a player not having the necessary information, such as preferences
of the other players, is defined as a game with incomplete information (Holler et al., 2019).

In addition to the information available to a player at the beginning of the game, a distinction
can also be made in information available to a player when he decides to make a particular move.
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If the player has the knowledge of all preceding moves of the other players, the player has perfect
information. In some game situations, however, this knowledge is not available, so the player
has only imperfect information (Holler et al., 2019). The problem of a game with imperfect
information within an extensive form game is explained in more detail with an example in Chapter
2.1.2.

However, as Harsanyi (1967) has shown, a game of incomplete information can be treated
formally like a game with complete but imperfect information without difficulty. In a game of
imperfect information, although certain actions of the players are not observable, everyone knows
the structure of the game and all the properties of the players. It is also known what alternative
actions the other players have and how they evaluate the alternatives.

In the course of a sequential game (cf. Chapter 2.1.2), the players of the game get new information
about the moves of the other players at each turn. As far as a player remembers already acquired
information, the players information becomes more accurate. If a player can remember all the
information at each of the players decision points, concerning both the players teammate and the
players own moves, the player has perfect recall and can make an accurate statement at the end of
the game about what event occurred (Holler et al., 2019). If this is not the case, it is a game of
imperfect recall for this player (Haurie and Krawczyk, 2000).

2.2. Differential games

In Game Theory, differential games are part of the general class of dynamic games. Dynamic
games are mathematical models that represent the interaction between different players controlling
a dynamic system over time (Haurie and Krawczyk, 2000).

A simple general example is the board game chess. The game of chess is a strategic board game
between two players who take turns moving their pieces, also called chessmen, on the board, the
chessboard. The winner is the player who manages to checkmate his opponent. Checkmating
means attacking the king’s piece in such a way that the opposing player can neither defend nor
escape. In dynamic systems, players can influence by their actions the temporal evolution of the
state of a system, which in the example of chess could be the positions of the other pieces on
the chessboard. In dynamic games, as in chess, the difficulty lies in the action decision of the
players. Each action of a player is influenced by the previous action of the other player and also
influences the reaction of the following player (Haurie and Krawczyk, 2000). Differential games
are a mathematical theory that deals with conflict problems modeled as game problems in which
the behavior of players and their interaction with each other is described by differential equations
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(Zanardi et al., 2021a).

Definition 2.2.1 According to Bressan (2010) let x ∈RN describe the state of the system, evolving

in time t according to the ordinary differential equation

dx
dt

= ẋ = f (t,x,u1,u2) t ∈ [0,T ],

with initial data

x(0) = x0.

Here u1(·), u2(·) are the controls implemented by the two players. We assume that they satisfy the

pointwise constraints

u1 ∈U1,u2 ∈U2,

for some given sets U1,U2 ⊆ Rm. For i = 1,2, the goal of the i-th player is to maximize his own

payoff, namely

Ji(u1,u2) =̇ψi(x(T ))−
T∫

0

Li(t,x(t),u1(t),u2(t)) dt.

Here ψi is a terminal payoff, while Li accounts for a running cost. Differential games, which can
also be called state-space games, involve multiple state variables that can describe the state of a
dynamical system dx

dt at a given time t (Jørgensen and Zaccour, 2003). The study and mathematical
formulation of differential games can be traced back to the work of Rufus Isaacs in 1954 in the
mathematics department of the research and development cooperation (Ramachandran and Tsokos,
2012), which was followed by further work by Leitmann and Liu (1974), Krasovskii and Subbotin
(1988) and Basar and Olsder (1995). Well-known examples of differential games include certain
types of fights, such as an airplane being chased by a missile, or the conflict between workers
and capitalists (Isaacs, 1999). From the examples given, it can be seen that differential games
is a suitable discipline of applied science, which can analytically model conflict problems of the
real world (Lewin, 2012). This type of games is based on the assumption that the past actions of
the players and all general influences of past events are summarized in the current state variables
Jørgensen and Zaccour (2003).

Theorem 2.2.1 Let a state variable be one of the variables used to describe the mathematical

state of a dynamical system or the state of a variable at a particular time T .

By selecting a control variable of a player, the values of certain other variables, such as the speed
or acceleration of a vehicle, are influenced within a differential game. These values of the other
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variables, which are changed by the control variables, are called state variables. Thus, the control
variables are functions of the state variables. State variables change during the course of the game
and, through their values at any point in time, reflect the current state of the game, which is thereby
completely determined (Isaacs, 1999; Ramachandran and Tsokos, 2012). In reality, there may be
inequality constraints on the state or control variables, which may also be referred to as admissible
controls and trajectories. In addition, constraints on the final state may also be imposed (Starr and
Ho, 1969b; Friedman, 2013). t f represents the final time point on the differential games in the
context of differential games, which may be variable or defined as a fixed time point (Starr and Ho,
1969b). Essentially, a differential game is a game in extensive form, see Chapter 2.1.2, which is
played in continuous time, and in its analysis it has turned out to be advantageous to consider this
game in the normal form representation (Jørgensen and Zaccour, 2003).

Since differential Game Theory is strongly related to optimal control theory, differential Game
Theory can be described as a mixture of the notions of control theory and decision structures
derived from classical Game Theory and the associated solution concepts (Lewin, 2012). The
book by Krasovskii and Subbotin (1988) gives a detailed overview of the connection between
control theory and differential Game Theory. According to Ramachandran and Tsokos (2012),
it is natural to view a differential game as a control process in which the players among whom
controls are divided are willing to commit to conflicting goals. The difference between optimal
control theory and differential games is essentially that the optimal control problem considers only
a single control. Differential games, therefore, cannot be reduced to optimal control models, since
here the assumption is made that only one player actively participates in the action, while the other
does not. In differential Game Theory each player tries to control the state of a system in such a
way that the player reaches his goal or maximum payoff (Kamien and Schwartz, 2012). According
to Ramachandran and Tsokos (2012), differential games can also be referred to as a class of two-
sided optimal control problems. Thus, optimal control theory can be called merely a special case of
differential Game Theory (Kamien and Schwartz, 2012). This special case was already described
in 1962 in the work of Pontryagin et al. (2018) in terms of minimization problems, which can be
formulated as differential games with one player. Among others, Kelendžeridze (1961) extended
the work of Pontryagin et al. (2018) to two players. However, especially in a differential game
of two or more players shows that the calculation of the NE is time consuming and especially in
nonlinear games complex calculations must be made (Mylvaganam et al., 2017; Başar, 1986).
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Differential games for the use of motion planning can already be traced back to LaValle (1995)
for autonomous robotics. However, insofar as robots leave the confined domain of a factory floor
and enter the complex real world, a systematic and rational type of interaction is necessary (Jafary
et al., 2018). Accordingly, autonomous players must explicitly consider other players in their
decision making, so that in the context of autonomous driving, for example, a vehicle first predicts
the actions, based on reasoning and uncertainty, of other vehicles before planning its own action
according to them. Liniger and Van Gool (2020), Spica et al. (2020), Wang et al. (2019) and
Williams et al. (2018) have studied racing scenarios in their work, see Chapter 2.1.3, that use
game-theoretic principles to achieve interactive behaviors.

Outside of racing scenarios, Zanardi et al. (2021c) describe in their work the interactive game
theoretic behaviors in a so-called Urban Driving Game (UDG). UDGs are a class of differential
games for modeling urban driving interactions and incentives. The work classifies the UDGs as
general-sum games, see Chapter 2.1.3, which have been formalized with a concise and comprehen-
sive structure suitable for describing everyday driving interactions from a game-theoretic perspec-
tive. In the driving game UDG, a player’s personal cost depends only on the player’s individual
state and the actions of other players. Each player within a UDG thus has his own priorities, driving
style, and abilities, which are considered personal characteristics. In addition to personal interests,
players also have a communal interest in not colliding with each other, which provides a certain
structure in urban traffic interactions. Depending on the activation limits and the dynamics of the
players, the preference of each agent is expressed through a lexicographic relation that includes the
common goal of not colliding with other agents, which allows the principle of minimal violation
to be introduced. The principle of minimal violation planning admits only the least bad and no
infeasible solutions to the competitive game-theoretic path planning problem (Tmová et al., 2013;
Wongpiromsarn et al., 2021). Conside-ring a civilized driving task that should involve collision-
free driving, the cost function of the UDG will have a lexicographic ordering that first consists of
not colliding and second consists of minimizing the individual personal cost. The work divides the
lexicographic goals into the following three preferences:

1) Avoid collisions with other vehicles and the environment
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2) Compliance with traffic regulations

3) Consideration of personal comfort and desired travel speed

The first preference of collision costs is set by the requirement to stay on the road with a width
of 7.0 m and by the violation of the minimum safety distance of 4.0 m. The compliance with
traffic rules is set in the second preference in terms of speed limit and lane limit. The third
preference is presented as a weighted sum of secondary personal goals. The weighted sum consists
of maintaining lane center, maintaining desired speed, and preferring comfort. Maintaining lane
center is penalized quadratically by deviating longitudinally and laterally from the desired lane.
In the course of maintaining the desired speed, each vehicle travels at a speed of 8.3 m/s at
the beginning of the UDG, and each vehicle tries to maintain this speed. Also in the course of
maintaining the desired speed, a deviation is penalized quadratically. However, this penalty is
asymmetric, as speeds lower than the intended desired speed are penalized less. Preference for
comfort is provided by a quadratic penalty for changes in steering speed and for fuel consumption.
Zanardi et al. (2021c) also prove in their paper that UDGs can have an ordinal potential structure
in the lexicographic sense, given the assumptions of common collision costs and personal goals.
According to the authors, the potential structure enables consideration of iterated-best-response
algorithms and computations of socially efficient NE via a single optimization problem. A socially
efficient NE is a NE of society, taking into account all external costs and benefits as well as internal
costs and benefits. The representative results of the paper are empirically illustrated by the agents’
game-theoretic decision making in a challenging intersection example. In this example, players
naturally exhibit reasonable rational behaviors derived on lexicographic preferences.

Figure 3.1 shows an excerpt of the simulated results of the work of Zanardi et al. (2021c).
The left scenario in Figure 3.1 shows that the red vehicle is forced off the lane by the stationary
black vehicle. The red vehicle abandons the goal of maintaining cruising speed to satisfy the
lexicographical higher goal of collision-free travel with other vehicles or the environment. In
contrast, in the right-hand scenario, the red vehicle is pushed into an aggressive driving maneuver
that involves significant steering effort and lateral deviations. This impacts and drives up the cost
to comply with traffic laws. The calculation of the NEs of the simulations shows that all NEs
are admissible in the lexicographic sense regardless of order and method, and thus no equilibrium
dominates the other equilibrium. A NE is admissible if no Nash Equilibrium dominates another
NE in the lexicographic sense These equilibria are referred to as socially efficient NEs. By proving
the existence of socially efficient NE, the work of Zanardi et al. (2021c) shows that efficient
partitioning of mobility space can be possible in theory as well as in practice.

Within differential Game Theory, a framework has been introduced for studying problems in
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Figure 3.1.: Excerpt of the simulated results from the paper by Zanardi et al. (2021c)

which multiple players attempt to achieve their individual goals. These goals may compete with
each other, but do not have to (Baqar and Olsder, 1982; Starr and Ho, 1969b,a; Isaacs, 1999).
Arslan et al. (2007) therefore conclude that differential Game Theory can be useful for studying
and solving problems in systems with multiple players. (Mylvaganam et al., 2017) consider a team
of mobile agents in their work. They focus on the problem of steering these agents from their given
initial positions to a set of predefined targets. The goal is to avoid collisions with static obstacles
as well as collisions with other agents. This problem is already called the multi-agent collision
avoidance problem in Mylvaganam et al. (2014) and is formulated in (Mylvaganam et al., 2017) as
a differential game. Multi-agent systems originated in control engineering (Mesbahi and Egerstedt,
2010; Lewis et al., 2013; Leonard, 2013), where the accomplishment of a team consisting of agents
of complex tasks is one of the main motivations within this research area of control engineering.
Multi-agent systems address many application areas. In general, agents are expected to solve
a task jointly. Some research topics dealing with multi-agent systems are inspired by naturally
occurring systems such as fish schools, migratory birds, and bee swarms (Haque et al., 2011;
Leonard and Fiorelli, 2001; Ogren et al., 2004, 2002; Su et al., 2009; Nabet et al., 2009; Paley
et al., 2007). In Mylvaganam and Astolfi (2012, 2014), the problem of continuous monitoring of a
defined region using teams consisting of unmanned aerial vehicles was formulated as a differential
game, for which approximate solutions were found using the methodology developed in Sassano
and Astolfi (2012). However, in addition to problems in which agents collaboratively solve a
problem in a multi-agent system, there are also problems in which agents have individual and
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or conflicting goals. In the work of Mylvaganam et al. (2017), a multi-agent system consisting
of N agents is considered. This system is a nonlinear differential game for which feedback NE
solutions are sought. Since these equilibrium solutions can only be obtained by solving complex
coupled partial differential equations and are not readily available, Mylvaganam et al. (2017) only
consider approximate solutions, the computation of which has already been explored in the work
of Mylvaganam et al. (2014). Using this solution, it can be shown that the strategies guarantee
that the agents reach their goals while not causing collisions, provided that certain assumptions are
met.
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Within these Chapters the methodological basis, which is necessary for the understanding of this
work, is explained. Besides the ideation, which explains the basic idea of this work in Chapter 4.1,
the modeling of the vehicle dynamics in Chapter 4.2 and the method for modeling a systematic
description of scenarios in Chapter 4.3, which serve as the basis of the simulation, are explained
within this Chapter. In addition, Chapter 4.4 provides an overview of how the reachable states
of the players, which are used as vehicles in this work, can be determined using Continuous
Reachability Analyzer. The Chapter 4.5 also explains how the cost functions are optimized in
the context of this work and how worst cases can be considered within a defined game scenario.

4.1. Ideation

As already explained in Chapter 2.2, the solution of differential games is complex and time-
consuming. Because of this, discrete control functions are used in this work instead of the con-
tinuous control function as they are generally used in differential games. For the different discrete
control variables of the discrete control functions, the reachability analysis is used to define the
different reachable states of the player. The reachability analysis makes it possible to take uncertain-
ties into account. Based on the achievable states, the costs for each player can be estimated. It is
interesting to note here that a state is not represented by a single vector, but by a geometric object.
The reason for using geometric objects instead of vectors is that uncertainties in the state can be
accounted for. Using the Continuous Reachability Analyzer (cf. Chapter 4.4), one can basically
take an initial set represented by a geometric object, a system dynamics, and a time horizon, and
compute all the states that are reachable from the initial state within the time horizon, given the
system dynamics. Based on the discrete control functions it is possible to consider and solve
normal form games instead of the complex and time consuming solution process of differential
games.
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4.2. Modeling vehicle dynamics

The vehicle dynamics are modeled according to the Kinematic Single-track Model (KS) by Althoff
and Würsching (2020). Within the KS model, no rolling dynamics are considered, which allows to
model a simplified vehicle using only two wheels. Here, both the front wheels and the rear wheels
are combined as a wheel pair (Rajamani, 2011). Furthermore, the single-track kinematic model
does not consider tire slip, so the velocity vector v, as visualized in Figure 4.1, is aligned at the
center of the rear axle with a connection between the front and rear axles (Althoff and Würsching,
2020). The KS model is also used in the work of Paden et al. (2016) and Petti and Fraichard (2005),
among others.

Figure 4.1.: Kinematic Single-track model according to Althoff and Würsching (2020)

x1 = sx (4.1)

x2 = sy (4.2)

x3 = ṡx (4.3)

x4 = ṡy (4.4)

Besides the variables of a point-mass model in Formula 4.5 to Formula 4.9 according to Althoff
and Würsching (2020), the steering angle δ , the velocity of the steering angle vδ and the wheelbase
parameter lwb are considered for the KS model. Accordingly, the differential equations of the KS
model are defined as follows (Althoff and Würsching, 2020):
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δ̇ = vδ (4.5)

ψ̇ =
v

lwb
· tan(δ ) (4.6)

v̇ = along (4.7)

ṡx = v · cos(ψ) (4.8)

ṡy = v · sin(ψ) (4.9)

For the description of the KS model in terms of a state space, the following state variables in
Formula 4.10 to Formula 4.14 and input variables in Formula 4.15 to Formula 4.16 are introduced
(Althoff and Würsching, 2020):

x1 = sx (4.10)

x2 = sy (4.11)

x3 = δ (4.12)

x4 = v (4.13)

x5 = ψ (4.14)

u1 = vδ (4.15)

u2 = along (4.16)

Provided the state and input variables of Formula 4.10 to Formula 4.16 are substituted into
the constraints for steering, velocity, and acceleration in Formula 4.5 to Formula 4.9, the following
equations result with which the dynamic of the KS model can be modeled (Althoff and Würsching,
2020):
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ẋ1 = x4 cos(x5) (4.17)

ẋ2 = x4 sin(x5) (4.18)

ẋ3 = fst eer(x3,u1) (4.19)

ẋ4 = facc(x4,u2) (4.20)

ẋ5 =
x4

lwb
· tan(x3) (4.21)

4.3. Method for modelling a systematic description of

scenarios

The function development of automated driving functions of many projects and companies put
a possible mass production of automated driving functions, which are tested by distance-based
test procedures so far. According to estimates by Wachenfeld and Winner (2015), a required test
distance of 6.22 billion kilometers is needed to verify an automated driving function with the
Operational Design Domain (ODD) highway. Only after verification over this test distance could
it be proven that the automated driving vehicle is twice as good as the human driver (DLR, 2019).
The ODD can be defined according to the Society of Automotive Engineers (SAE): „Operating
conditions under which a given driving automation system or feature thereof is specifically designed
to function, including, but not limited to, environmental, geographical, and time-of-day restrictions,
and/or the requisite presence or absence of certain traffic or roadway characteristics“ (SAE, 2018).

SAE (2018) introduced this concept to capture constraints for Level 1, 2, 3, and 4 driving
automation. Level 5 driving automation describes the full driving automation and has an unlimited
ODD that provides the same mobility as a human driving (SAE, 2018). Testing automated driving
functions with a distance-based approach therefore involves a disproportionate amount of effort
due to the large dimension of test kilometers. For this reason, new methods are needed for efficient
testing and for verification and validation of automated driving functions. Thus, a new general state
of the art for test methods and test case selection had to be defined, which can be used for a series
release of these driving functions. The solution to this problem is the scenario-based approach for
testing, verification and validation of automatic functions, which is also used for testing software.
The scenario-based approach has the advantage of using a systematic and structured approach
instead of a distance-based approach with random test cases. However, the change to a scenario-
based approach raises new research questions regarding the level of performance expected from an
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automated driving system and the extent to which it can be verified that the desired performance
can be consistently achieved (DLR, 2019).

The Research Project for the Establishment of Generally Accepted quality criteria, tools, methods
and Scenarios and Situations (PEGASUS) for the release of highly automated driving functions
addresses such research questions using the example of a highway driver ODD. The project is
funded by the German Federal Ministry for Economic Affairs and Energy and includes, among
other things, the sub project testing (DLR, 2019). Within the third sub-project Testing, a model for
the systematic description of scenarios is defined. The model has been adapted for an automated
representation of functional scenarios and a representation in an ontology based on previous work
by Schuldt (2017). This model contains the following six independent Layers:

• Layer 1: Road-Level

• Layer 2: Traffic Infrastructure

• Layer 3: Temporary manipulation of Layer 1 and Layer 2

• Layer 4: Objects

• Layer 5: Environment

• Layer 6: Digital Information

As the Figure 4.2 visualizes, Layer 1 describes the road level, which includes the geometry
and the topology of the road as well as the state and condition and the buildings and vegetation.
Furthermore, the road marking is also taken into account. The second Layer defines the guiding
infrastructure of the scenario through the signage in the form of danger and directional signs as
well as the regulations that are regulated in the road traffic regulations (StVO, 2019; Böde et al.,
2019).

Both Layer 1 and Layer 2 are defined according to the german guideline for the construction
of freeways (FGSV, 2011). Temporary manipulations of Layer 1 and Layer 2 are conceptually
described in Layer 3. This may take the form of temporary signage or marking lines to warn of or
direct traffic through construction sites. Road user interactions through maneuvers are defined in
Layer 4. In addition, the description of both static objects, such as parked vehicles, and dynamic
objects is part of this layer. Examples of the dynamic objects are not only the road users, such
as vehicles, but also the non-road users, such as animals or pedestrians. Layer 5 models the
weather conditions of the scenario to be described. This includes parameters of the environmental
conditions in the form of weather conditions of the road as well as lighting conditions and other
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Figure 4.2.: Model for a systematic description of scenarios with six independent Layers DLR
(2019)

particles or contaminants. Layer 6 describes the digital infrastructure and digital information, such
as digital data or Vehicle-to-Everything. Among other things, the digital infrastructure provides
road users, with a certain degree of automation, with information in the form of data via a cloud
that provides the current location, other road users or possible hazards (Audi and Volkswagen,
2019).

4.4. COntinuous Reachability Analyzer (CORA)

In this work, the MATLAB toolbox CORA is used for the prototypical design of reachability
analysis algorithms. CORA has been designed for various types of systems with purely continuous
dynamics, such as linear systems, nonlinear systems, differential-algebraic systems, and parameter-
variable systems, among others. The continuous part of the solution for a given discrete initial state
is defined as
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χ(t;x0,u(·), p) (4.22)

where t ∈ R is the time, x0 ∈ Rn is the continuous initial state, u(t) ∈ Rm is the system input at
t,u(·) is the input trajectory and p ∈Rp is a parameter vector. Formula 4.23 defines the continuous
reachable set at time t f for a set of initial states x0, a set of input values U(t), and a set of parameter
values P (Althoff et al., 2021).

Re(t f ) = {χ(t f ;x0,u(·), p) ∈ Rn|x0 ∈ χ0, : u(t) ∈U(t), p ∈ P} (4.23)

Since exactly reachable sets usually cannot be computed for system classes (Lafferriere et al.,
2001) CORA supports the over-approximative computation of reachable sets. From this basis,
CORA computes over-approximations for specific time points R(t) ⊇ Re(t) and time intervals
R(|t0, t f |) = ∪t∈|t0,t f |R(t). CORA makes it possible to construct your own computation of the
reachable set in a relatively short time (Althoff et al., 2021). These achievable quantities are the
basis for the normal form game as well as their cost functions. In the context of this work, the
basis for the cost functions is the mean value of the achievable set, which allows each achievable
state to be represented as a point.

4.5. Optimization of the cost estimation

As already explained in Chapter 4.4, a set of reachable states is given by the CORA, which in
turn are represented by geometric objects. In the context of this work, these are zonotopes. Since
our defined cost functions do not deal with zonotopes, this work attempts to find representatives
for each reachable set. Therefore, worst cases are estimated for each pair of controls included
in the reachable states. Depending on the cost function, the cost functions are either maximized
or minimized. In the context of the nonlinear optimization of the cost functions, optimization
functions are defined in MATLAB, in which the respective cost functions are adapted with respect
to the worst cases. Within an optimization function, a scalar optimization variable is created
using the function optimvar (see Formula 4.24), which creates expressions for the constraints
1,numconstr and the objective functions LowerBound and U pperBound of the optimization pro-
blem with respect to the variable x. The U pperBound represents the largest possible and the
LowerBound the smallest possible value of a parameter.
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x = optimvar(x,1,numconstr,LowerBound,U pperBound) (4.24)

Furthermore, an equation ob j is required, which is to be optimized with respect to x in order to
determine the worst case of the respective cost function for the calculation of the respective cost. If
this equation is defined, it is defined to what extent this equation should be optimized (see Formula
4.25). Ob jectiveSense can be a structure with values minimize (min) or maximize (max).

prob = optimproblem(Ob jective,ob j,Ob jectiveSense,max/min) (4.25)

The solve function can be used to solve problems (prob) defined in MATLAB for a variable x.
In this case, the equation for a solution S can be defined according to Formula 4.26.

S = solve(prob,x) (4.26)

Using this opimization function for the individual cost function, the initial states, which represent
the worst case for the optimized function, can then be passed on to the cost function.
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5. Creation of the normal form game

In the context of this work, a two player normal form game is defined, in which the two players
are referred to as vehicles. This normal form game, whose structure is explained in Chapter 5.1, is
a static, non cooperative, general sum game, in which the players do not receive any information
about the preferences and properties of the other vehicle. With the help of this normal form game,
the cost functions are to be evaluated on the basis of real scenarios with real maneuvers, which are
defined in Chapter 5.2, and assessed with regard to their quality and correctness. With regard to the
cost functions, a distinction is made between cost functions that are intended to avoid collisions in
Chapter 5.3 and non-collision-avoiding cost functions from Chapter 5.4, which must nevertheless
be taken into account due to their safety relevance.

5.1. Structure of the normal form game

The structure of the normal form game is significantly influenced by the initial state of the player
i. In the context of this work, the players of a game are vehicles whose initial state can be defined
based on the vehicle model from Chapter 4.2. The initial state for a vehicle i is defined as state0, i

according to Formula 5.1.

state0, i = [xi,yi,δi,vi,ψ] (5.1)

For each parameter of the initial state of a vehicle state0, i the uncertainties can be quantified.
Based on simulation results of the individual cost functions from the following Chapters 5.3 and
5.4, the following uncertainties for the initial state of a vehicle state0,unc, i can be quantified and
assumed accordingly. Uncertainty for the parameter ψ does not need to be defined, since this
parameter is not needed with respect to the cost functions and thus will have no impact on the cost
of a game. For this reason, the parameter ψ will be considered further in the context of this work.
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state0,unc, i = [0.005,0.005,0.001,0.001,0.0] (5.2)

In the context of this work, a strategy u is composed of the steering angular velocity ω and the
acceleration a according to Formula 5.3.

u = [ω,a] (5.3)

Within a game, each vehicle i can choose between three strategies in the context of this work,
so the strategies can be defined according to the following Formula 5.4.

ui = [[ωu1,au1], [ωu2,au2], [ωu3,au3]] (5.4)

Uncertainties can also be quantified for the strategies. Based on the simulation results of the
individual cost functions from the following Chapters 5.3 and 5.4, the following uncertainties for
the strategies of a vehicle uunc, i can be quantified and assumed according Formula 5.5.

uunc, i = [0.001,0.001] (5.5)

Using the reachability analysis from Chapter 4.4, the states of a vehicle i over a defined time
horizon thorizon are determined depending on the selected strategies ui. For each state calculated
by the reachability analysis over thorizon, the costs Ji for the vehicle i are calculated as a function
of the strategy ui and added together for the defined time horizon thorizon. Thus, costs Ji can also
be incurred for a strategy, even if it does not yet incur costs at the beginning of the time horizon
thorizon. The cost Ji for the particular vehicle i is formed by the cost functions defined in the context
of this work. These cost functions can be considered alone or directed weighted in interaction with
other cost functions. The cost functions generate a payoff depending on the three strategies that
each vehicle can choose. The payoff can be described and represented according to the Definition
2.1.17 by a 3x3 bimatrix for both vehicles.
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uveh1,1 uveh1,2 uveh1,3
([ωu1,au1], [ωu1,au1]) ([ωu2,au2], [ωu1,au1]) ([ωu3,au3], [ωu1,au1]) uveh2,1

([ωu1,au1], [ωu2,au2]) ([ωu2,au2], [ωu2,au2]) ([ωu3,au3], [ωu2,au2]) uveh2,2

([ωu1,au1], [ωu3,au3]) ([ωu2,au2], [ωu3,au3]) ([ωu3,au3], [ωu3,au3]) uveh2,3

As explained in Definition 2.1.17, the payoff matrices for both vehicles can be specified separately,
with matrix veh1 being the payoff matrix for vehicle 1 and matrix veh2 being the payoff matrix for
vehicle 2.

veh1 =


([ωu1,au1]) ([ωu2,au2]) ([ωu3,au3])

([ωu1,au1]) ([ωu2,au2]) ([ωu3,au3])

([ωu1,au1]) ([ωu2,au2]) ([ωu3,au3])

veh2 =


([ωu1,au1]) ([ωu1,au1]) ([ωu1,au1])

([ωu2,au2]) ([ωu2,au2]) ([ωu2,au2])

([ωu3,au3]) ([ωu3,au3]) ([ωu3,au3])

Using the Python library Nashpy (Knight, 2017), which can be added to Python to compute
equilibria in strategic 2-player form games, NE are determined based on the payoff matrices for
both vehicles.

5.2. Modelling scenarios

According to Chapter 4.3, in this work, the cost functions are simulated, evaluated, and tested using
a total of three scenarios, where Layer 3, Layer 5 and Layer 6 are not considered in the context
of this work with regard to the modeling of the scenarios. These three scenarios should represent
real scenarios between two vehicles, so that the simulation and evaluation of the cost functions is
as close to reality as possible and can thus be transferred more easily into practice. Within these
three scenarios, which will be defined in the following, reasonable realistic maneuvers of the two
vehicles will be defined. By means of these maneuvers it shall be shown that the cost functions
reflect the different costs depending on the strategies as it is to be expected for the respective
maneuver within the scenario. For each scenario, there are of course more maneuvers in reality
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than defined in the scope of this work. Due to the complexity, this is only a selection of maneuvers
that seem to make sense in the scenario under consideration. According to Chapter 4.3 the Layer
1, Layer 2 and Layer 4 can be defined identically for all three scenarios. Regarding Layer 1, the
scenarios can be defined as two-way-traffic (twt) road, with a lane width of 3.5 m. Regarding the
traffic infrastructure in Layer 2, a speed limit of 27.7778 m/s can be defined. Within Layer 4,
from the point of view of a vehicle i, the other vehicle j can be defined as an object. In connection
with the cost function obstacle distance defined in Chapter 5.3.5, an obstacle can be defined as an
object, which will influence the trajectories of both vehicles on the road. In the following, among
other Figures 5.1 to 5.3, the white vehicle is referred to as vehicle 1 and the red vehicle as vehicle
2.

Figure 5.1.: Schematic representation of scenario 1

The first scenario, which is visualized in Figure 5.1, is supposed to represent an overtaking
maneuver of the first vehicle, whose initial state is defined in Formula 5.6. The second vehicle,
which travels at a lower speed than the first vehicle and whose initial state is defined in Formula
5.7, is thus overtaken. From the two Formulas 5.6 and 5.7, it can be seen that both vehicles are in
the center lane of the respective lanes and there is a speed difference of 2.7778 m/s between the
two vehicles.

state0, veh1 = [0.0,1.75,0.0,27.7778,0.0] (5.6)

state0, veh2 = [0.0,−1.75,0.0,25.0,0.0] (5.7)

Since the first vehicle is on the other lane for overtaking, the only sensible maneuver for vehicle
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1 is to complete the overtaking maneuver and change back to the previous lane. Vehicle 1 has to
choose the strategy in such a way that it does not collide with the second vehicle and, if necessary,
has to accelerate in order to change back to the previous lane. For vehicle 2, keeping the lane is a
reasonable maneuver. In addition, the second vehicle could also increase speed and accelerate to
the defined speed limit of 27.7778 m/s.

Figure 5.2.: Schematic representation of scenario 2

The second scenario, visualized in Figure 5.2, is intended to reflect the driving situation in which
the first vehicle, whose initial state is defined in Formula 5.8, approaches at a higher speed a slower
vehicle 2, whose initial state is defined in Formula 5.9. Identical to scenario 1, it can be seen from
both Formulas 5.8 and 5.9 that both vehicles are on the lane center of the same lane and there is a
speed difference of 2.7778 m/s between the two vehicles.

state0, veh1 = [0.0,−1.75,0.0,27.7778,0.0] (5.8)

state0, veh2 = [15.0,−1.75,0.0,25.0,0.0] (5.9)

As the first vehicle approaches the second vehicle with a speed difference of 2.7778 m/s, the
first vehicle has the possibility to slow down and adapt to the speed of the second vehicle or to
start an overtaking maneuver and overtake the second vehicle. A sensible maneuver for the second
vehicle is, as in scenario 1, to stay in the lane or to increase the speed and to accelerate to the
defined speed limit of 27.7778 m/s. The second vehicle can then overtake the first vehicle.

The third scenario, which is visualized in Figure 5.3, is intended to reflect a driving situation in
which the first vehicle, whose initial state is defined in Formula 5.10, is approaching an oncoming
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Figure 5.3.: Schematic representation of scenario 3

vehicle 2, which is driving in the other lane. The initial state of the oncoming vehicle 2 is defined
in Formula 5.11. Identical to the other two scenarios, it can be seen from the two Formulas 5.10
and 5.11 that both vehicles are traveling on the lane center of the respective lane and there is a
speed difference of 2.7778 m/s between the two vehicles.

state0, veh1 = [0.0,−1.75,0.0,27.7778,0.0] (5.10)

state0, veh2 = [60.0,1.75,0.0,25.0,π] (5.11)

Reasonable maneuvers for the third scenario are for both vehicle 1 and vehicle 2 to continue
to follow their respective lane, since a change or departure from the lane may result in a frontal
collision between the two vehicles. Vehicle 2 can also, as in scenarios 1 and 2, increase speed and
accelerate to the defined speed limit of 27.7778 m/s as a result.

5.3. Modeling cost functions to avoid collisions

In the following Chapters the cost functions of collision energy in Chapter 5.3.1, Time-To-Collision
in Chapter 5.3.2, center lane offset in Chapter 5.3.3, Euclidean distance in Chapter 5.3.4 and
obstacle distance in Chapter 5.3.5 are explained. These cost functions are intended to avoid
collisions and must therefore be considered for a safety analysis of a game.
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5.3.1. Cost function collision energy

One way to estimate and calculate the severity of the accident is to calculate delta-V (△V ). This
is a notation used in physics to denote the change in velocity of an object. In general, it is also
used to refer to the change in velocity due to a collision. In terms of traffic accidents, △V refers to
the change in velocity vector during a collision. When the magnitude and direction of the velocity
changes rapidly, large forces act on the road user and these forces are expected to have a significant
impact on personal injury. In addition, △V also takes into account the vulnerability of the road user.
This property is important in studies of collisions because a light vehicle colliding with a heavy
vehicle bounces back, whereas the speed of the heavy vehicle remains almost unchanged. An
example of this is a collision between a truck and a car (Laureshyn et al., 2017). This assumption
is supported by examples of Evans (1994), Gabauer and Gabler (2008) and Johnson and Gabler
(2012) from crash safety research. In addition, the relationship between △V and the risk of serious
injury is also confirmed by Johnson and Gabler (2012), Evans (1994) and Gabauer and Gabler
(2008) as well as Ryb et al. (2007). Based on these factual circumstances, Joksch (1993) and
Shelby et al. (2011) designate △V as the best single predictor of accident severity.

The notation △V has been used in a wide variety of studies. In Shelby et al. (2011) and Gettman
et al. (2008), △V was integrated into the automatic conflict analysis algorithms of the Surrogate
Safety Assessment Model to analyze the severity of traffic conflicts. Sobhani et al. (2011) and
Sobhani et al. (2013) supplemented △V with the use of kinetic energy Laureshyn et al. (2017)
extended the △V traffic conflict measure by integrating the proximity to an accident as well as the
outcome severity for the case where an accident would have occurred. Based on the computation of
△V , Astarita et al. (2020), Astarita and Giofré (2019) and Alonso et al. (2020) propose this, based
on vehicle trajectories, as a variety of safety indicators can determine the location of potential
collisions but do not differentiate between the severity of collisions.

To estimate the crash severity, the velocities of two colliding vehicles before the collision v1s

and v2s and the masses m1 and m2 of these vehicles at an arbitrary angle are used. s denotes, with
respect to the velocity and in the following also to other parameter values, the respective values
before the collision of the vehicles. In contrast, f denotes in the following the respective parameter
value after the collision. According to Newton, the relative velocity in a one-dimensional collision
of two bodies is proportional to the velocity of the bodies before the collision multiplied by the
coefficient of elasticity of the two bodies:

v2 f − v1 f =−ε · (v2s − v1s) with 0 ≤ ε ≤ 1 (5.12)
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In the Formula 5.12 it must be taken into account that the elasticity ε decisively influences
the values of △V , since this value tells how much kinetic energy the two colliding vehicles absorb
during the collision. Here, ε = 0 denotes a plastic or also inelastic collision, in which the maximum
possible energy is absorbed, causing the vehicles to stick to each other and move at the same
speed after the collision (Szabo, 1972). According to Shelby et al. (2011), the reality value of
the elasticity is in between, since in reality collisions have a value of the elasticity coefficient
of 0.4 at lower speeds and 0.1 at higher speeds (Shelby et al., 2011; Nordhoff, 2005). For the
implementation, △V is calculated as if this were a completely inelastic collision, hence ε = 0.
For approximate calculations it is obvious to consider collisions as inelastic because of the lower
computational effort. As a result, the velocity values are underestimated according to Shelby et al.
(2011). This underestimation amounts from 1 percent to 30 percent (McHenry and McHenry,
1997).

The △V values to which the road users are subjected in a specific collision can be calculated
by applying the law of conservation of momentum (Burg et al., 2017). In the present work, the
momentum P is expressed as a two-dimensional vector of the product of the mass and the velocity
vectors of the two vehicles before the collision v1s and v2s:

P = m1 ·v1s +m2 ·v2s (5.13)

Formula 5.13 is valid for both elastic and plastic collisions. By making the assumption ε = 0,
the following mathematical relation is obtained for a plastic collision:

m1 ·v1s +m2 ·v2s = m1 ·v1f +m2 ·v2f (5.14)

The vehicles absorb the maximum possible energy in a plastic collision, which causes the
vehicles to stick to each other and move at the same speed after the collision. Thus, the velocities
of the two vehicles v1f and v1f are the same after the collision. Accordingly, this velocity will be
referred to as V in the following. Thus, Formula 5.14 can be rearranged as follows:

v1f = v2f =̂
m1 ·v1s +m1 ·v2s

m1 +m2
=̂ V (5.15)

The Formula 5.15 considers only straight central collisions. Considering the angle of incidence
α , based on the Formula 5.15, the modified Formula 5.16 results:
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V =
1

m1 +m2
·
√
(m1 · v1s)2 +2 ·m1 ·m2 · v1s · v2s · cosα +(m2 · v2s)2 (5.16)

By calculating V from Formula 5.15, the velocity changes for the two vehicles during the
collision can be determined:

|△v1|= |V−v1s| (5.17)

|△v2|= |V−v2s| (5.18)

Figure 5.4.: Calculation of the resulting velocities V, △v1 and △v2 according to the law of
conservation of momentum for elastic and plastic collisions by Astarita and Giofré
(2019) and Sobhani et al. (2013)

As can be seen from the Formulas 5.17 and 5.18, in order to calculate the speed changes of
the vehicles △v1 and △v2, it is necessary to calculate the differential speed of the vehicles as
accurately as possible.

Also in expert opinions of accidents, the collision-related change in speed of the struck vehicle
(△V ) is considered, among other things, as the decisive parameter. Including this parameter, it is
often attempted to establish a relationship between the severity of the impact and the extent of a
cervical spine injury (CSI) of the occupant (Dannert, 2005). A clear limit of a possible so-called
harmlessness limit, which indicates the lower value up to which point a load is harmless and thus
harmless, does not exist legally (Grönemeyer, 2008). Special importance is attached to the △V -
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range between 5 and 15 km/h in which partly no damage to the vehicles can be proved, because in
this range non-structural CSI injuries cannot be diagnosed objectively (Elbel, 2007). In the studies
of Eichberger et al. (1996), Eichberger et al. (1998), Kaneoka et al. (2002), Matsushita et al. (1994),
Mertz and Patrick (1971) and Mühlbauer et al. (1999) the subjects described discomfort in the CSI
area after sled tests, whereas in the studies of Eichberger et al. (1998), Kaneoka et al. (2002),
Matsushita et al. (1994) and Mühlbauer et al. (1999) the △V was below 10 km/h during the tests.
In the literature, different thresholds for △V are defined, from which a CSI violation is possible
(Dannert, 2009; Elbel, 2007), assuming, that exceeding a harmlessness limit of 10 km/h for △V

relevant damage can occur after passenger car rear-end collisions (Grosser, 2004; C, 1993; Lucka,
1998; Meyer et al., 1994; Miltner, 2002; Niederer et al., 2001). According to Weber et al. (2004)
and Schmidt H and C (2004), a harmlessness limit between 20 to 30 km/h △V can be assumed
for front collisions, and according to Becke et al. (1999), a harmlessness limit of 5 km/h △V can
be assumed for side collisions.

To gain further insight into the problem of discomfort at low △V , Meyer et al. (2002) a series of
experiments in which subjects were simulated collisions using visual, auditory, and sensory tricks
so that the △V was only 0 km/h. Despite the nonexistent △V , 20 percent of subjects reported
CSI injuries. Meyer et al. (2002) concludes that psychosomatic effects can play a significant role
in collisions and that the effects can thus also occur in trials with △V psychosomatic effects.
Furthermore, Sturzenegger et al. (1995) describes that different risks for CSI injuries can occur in
relation to the seating position. For example, when the seating position is out of position (Fürbeth
et al., 1999; Meyer et al., 1999), or when the direction of gaze is changed by moving the head
(Winkelstein et al., 1999), the occupant’s risk of injury can be significantly increased.

Based on the classification of the harmlessness limit in terms of △V by the literature, the
following △V sectors for the collision energy cost function are defined in this work:

• Sector 1: 0 km/h < △V ≤ 5 km/h

• Sector 2: 5 km/h < △V ≤ 10 km/h

• Sector 3: 10 km/h < △V ≤ 15 km/h

• Sector 4: 15 km/h < △V

5.3.2. Cost function Time-to-Collision

According to Vogel (2003), the most effective method for measuring traffic conflicts is the use of
safety indicators, since these indicators are promising tools for detecting risky rear-end collisions

45



CHAPTER 5. CREATION OF THE NORMAL FORM GAME

and for analyzing and evaluating traffic safety. In this context, the surrogate safety measures
(SSM), which were developed based on the movement characteristics of vehicles, are suitable
criteria for the definition of collision avoidance systems (Nadimi et al., 2016). In this context,
SSMs represent indicators suitable for detecting hazardous situations (Archer, 2005; Barceló Bugeda
et al., 2003; Cunto, 2008; Garber and Gousios, 2009; Gettman and Head, 2003; Sobhani, 2013;
Young, 2014). So far, various safety indicators have been developed, such as Time-To-Collision
(TTC), time after impact, unsafe density, collision avoidance deceleration rate, percentage of
stopping distance, gap time, comprehen-sive time-based measure, rear-end collision probability,
etc. (Hayward, 1971; Allen et al., 1978; Archer, 2005; Barceló Bugeda et al., 2003; Behbahani,
2014, 2015; Cooper, 1984; Cunto, 2008; Minderhoud and Bovy, 2001). Since the majority of
SSMs use a driver and their response behavior as parameters to calculate the safety indicator, only
TTC is considered in this work.

TTC is the time to collision and a main criterion in traffic conflict engineering, the concept
of which was introduced by Hayward (1971) and Saffarzadeh et al. (2013) and which is applied
to different types of conflicts such as rear-end, head-on and angle collisions (Minderhoud and
Bovy, 2001). The TTC is the best known time-based safety indicator, which has been shown
to be an effective indicator for evaluating traffic safety in traffic collision research (Minderhoud
and Bovy, 2001; Vogel, 2003; Oh et al., 2006) and is also considered to be an effective measure
for distinguishing between critical and normal behavior in rear-end collisions (Saffarzadeh et al.,
2013). The TTC safety indicator is used, among other things, in the development of collision
avoidance systems (Van Der Horst and Hogema, 1993), which can also be used in traffic management
for highways (Balas and Balas, 2008). In the study by BMWI (2020), TTC was estimated in terms
of length with the result that accidents in critical situations with a TTC of less than 1.3 s were hardly
avoidable. In contrast, accidents in critical situations with a TTC of more than 1.7 s occurred very
rarely. For this reason, the study sets the threshold of human driving ability in this range of 1.3
to 1.7 s. Accordingly, the higher the TTC value, the safer the situation. In the work of Lehsing
(2019), situations with values smaller than 1.5 s were already classified as critical. In contrast, the
TTC values of drivers who generally drove more cautiously were between 2.4 and 3.6 s.

Various improvements and concretizations have already been developed and proposed for the
safety indicator. These include the introduction of the modified TTC (MTTC) (Ozbay, 2008),
generalized formulations of the TTC (Saffarzadeh et al., 2013), developments of an inverse time to
collision (Kiefer, 2005), and the TTC in terms of a moving section and a point (Laureshyn, 2010).
However, these are not considered further in this work due to its complexity.

At a given time t, the TTC value thus defines the time required for two or more vehicles to
collide under certain circumstances, provided that these vehicles continue to follow their current
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trajectory at their current speed and no evasive maneuvers are performed (Minderhoud and Bovy,
2001; Vogel, 2003; Lee, 1976). Using the Figure 5.5 and the following equation 5.19, the TTC
value for a following vehicle F at a given time t can be calculated with respect to a preceding
vehicle L (Saffarzadeh et al., 2013).

Figure 5.5.: Surrogate safety indicator TTC (Saffarzadeh et al., 2013)

T TCF(t) =
1XL(t)−XF(t)− lL

ẊF(t)− ẊL(t)
with ∀ẊF(t) > ẊL(t (5.19)

In this equation, XL represents the position of the vehicle, the derivative ẊL(t) of XL after time
t represents the velocity of the vehicle, and lL represents the length of the vehicle L ahead. The
following vehicle F is described by the position of the vehicle XF , the velocity of the vehicle ẊF(t)

(Saffarzadeh et al., 2013). Since only the centers of gravity of the vehicles are considered in the
context of this work, the length of the vehicle ahead lL can be neglected, resulting in the following
equation for the scope of this work:

T TCF(t) =
XL(t)−XF(t)
ẊF(t)− ẊL(t)

with ∀ẊF(t) > ẊL(t) (5.20)

TTC thus represents, in the context of this work, the shortest distance between the two vehicles
divided by the amount of relative speed of the two vehicles. Since the length of the vehicles is
not considered, the TTC is the same for both vehicles. Since the TTC equation 5.19 is based on
the assumption that both the vehicle ahead and the vehicle behind are traveling at constant speed
until the collision, the actual acceleration or deceleration of the two vehicles during this period is
not considered. Due to this, potential collisions may be incorrectly ignored due to discrepancies
in acceleration and deceleration, resulting in some dangerous events that may affect traffic safety
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(Saffarzadeh et al., 2013). Based on the Formula 5.21, the TTC in this work for the individual
vehicle i depending on the other vehicle j is calculated as follows:

T TCi( j) =
X j(t)−Xi(t)
Ẋi(t)− Ẋ j(t)

(5.21)

Since at least 2 vehicles i and j are considered in the context of this work and according to
Formula 5.21 the same costs for T TCi( j) and T TC j(i) would be determined for both vehicles, the
quadrated speed v of the respective vehicle enters into the cost J. Thus, if the speed of a vehicle i

is higher, the cost Ji for that vehicle is also higher.

Ji( j) =
X j(t)−Xi(t)

Ẋi(t)− Ẋ j
· Ẋ2

i = T TCi( j) · v2
i (5.22)

J j(i) =
Xi(t)−X j(t)

Ẋ j(t)− Ẋi
· Ẋ2

j = T TC j(i) · v2
j (5.23)

According to Formula 5.22 and Formula 5.23, a value for the TTC for the individual vehicle is
calculated at each point in time regardless of how far apart they are. Since the costs add up over the
time period considered in the static form game, (see Chapter 5), this calculation is not useful for
analyzing the resulting costs Ji( j) and J j(i). For this reason, a safety distance for TTC dT T C, sa f e

is introduced, so that only if the shortest distance dT T C, s between the two vehicles falls below the
safety distance dT T C, sa f e, the TTC for the respective vehicle is calculated.

5.3.3. Cost function center lane offset

The cost function center lane offset calculates the cost Jclo, i for the amount of deviation from the
center lane. To determine the amount of deviation from the center lane, the shortest distance dclo, s

of the vehicle i to the center lane is calculated. Since, among other things, smaller deviations are
hardly avoidable and since uncertainties with respect to the position of the vehicle are considered
in the context of this work, a tolerable deviation from the center lane is introduced in the form
of the distance dt ol, clo. According to Formula 5.24, this distance results from the lane width dl

and the center lane tolerable distance factor Kt ol, clo. Figure 5.6 illustrates possible factors for the
center lane tolerable distance factor Kt ol, clo.

dt ol, clo = Kt ol, clo ·dl (5.24)
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Figure 5.6.: Schematic representation of the tolerable distance from the lane center offset

For the cost function center lane offset, costs Jclo, i are calculated for the respective vehicle i

only if the shortest distance of the vehicle to the center lane dclo, s is smaller than the tolerable
distance to the center lane dt ol, clo. The cost Jclo, i for the particular vehicle i as a function of the
tolerable distance dt ol, clo according to Formula 5.24 and the speed vi are calculated according to
Formula 5.5.3.

Jclo, i = dcl, s · v2
i (5.25)

The cost function center lane offset also distinguishes between one way traffic (owt) and two
way traffic (twt). Since a deviation from the tolerable center lane distance dt ol, clo can have more
severe consequences for twt than for owt due to oncoming traffic, a factor is used to account for
these cost differences. This factor Ktwt , cl is considered in the calculation for the cost Jclo, i in
Formula 5.5.3.

Jclo, i = dcl, s · v2
i ·Ktwt , cl (5.26)

5.3.4. Cost function Euclidean distance

The Euclidean distance is the distance term of Euclidean geometry. It is used to determine the
distance between two points in a plane or in a space (Kowol, 2009). The Euclidean distance is used
in the context of this work to determine the shortest distance deucl, s. In the euclidean distance cost
function, the shortest distance deucl, s between vehicle i and vehicle j is to be determined. Unless
the vehicles are traveling on the same roadway, the cost Jeucl, i of each vehicle i is calculated using
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Formula 5.27. As formulated in Formula 5.27, the cost Jeucl, i becomes higher as the respective
vehicle i or vehicle j gets closer to the other vehicle. In addition, the squared velocity v of the
respective vehicle enters the cost. Thus, if the speed vi of a vehicle i is higher, the cost Jeucl, i for
that vehicle i is also higher compared to a slower vehicle at the same shortest distance deucl, s.

Jeucl, i = deucl, s · v2
i (5.27)

According to the Formula 5.27, a value for the distance to the other vehicle j is calculated for
vehicle i at each time t, regardless of how far vehicle i is from vehicle j. Since the costs in the
static form game (see the Chapter 5) sum over the given time horizon, this calculation is not useful
for analyzing the resulting cost Jeucl, i. For this reason, a safety margin deucl, sa f e is introduced so
that only if this margin deucl, sa f e is fallen short of, the cost Jeucl, i is calculated with respect to the
shortest distance ds to the vehicle j for the respective vehicle i.

If the two vehicles are driving on the same lane, the direction in which the two vehicles are
driving is taken into account. For this purpose, the steering angles δi and δ j of the two vehicles
are used. Since the steering angle is not expected to be exactly the same due to uncertainties and
smaller steering movements, a steering angle tolerance is calculated for the two vehicles. This is
composed of the lower bound in Formula 5.28 and the upper bound in Formula 5.29 of a vehicle i.

δLB, i = δi − range(δi) (5.28)

δU B, i = δi + range(δi) (5.29)

If the steering angle δi of vehicle i is within the steering angle tolerance of vehicle j and the
steering angle δ j of vehicle j is within the steering angle tolerance of vehicle i, it can be assumed
that the two vehicles are moving in the same direction.

Assuming that the two vehicles travel on the same roadway and both the steering angle δi of
vehicle i is within the steering angle tolerance range of vehicle j and the steering angle δ j of
vehicle j is within the steering angle tolerance range of vehicle i, the calculation of the cost Jeucl

for the respective vehicle is distinguished in whether the shortest distance deucl, s between the
two vehicles is smaller than the previously defined desired parameter. Provided that the shortest
distance deucl, s is smaller than previously defined parameter, the cost is calculated by Formula
5.27.
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5.3.5. Cost function obstacle distance

The cost function obstacle distance describes the costs Jobs, i incurred for the vehicle i depending
on the shortest distance dobs, s between the respective vehicle i and the obstacle. In the context of
this work, an obstacle is understood to be Layer 4 from Chapter 4.3, in which static objects, such
as parked vehicles or other objects, are defined, among others. As formulated in Formula 5.30, the
cost Jobs, i becomes higher the closer the respective vehicle i gets to the object. Moreover, we the
goes the squared velocity vi of the respective vehicle into the cost. Thus, if the speed vi of a vehicle
i is higher, the cost Jobs, i for this vehicle is also higher compared to a slower vehicle at the same
shortest distance dobs, s.

Jobs, i = dobs, s · v2
i (5.30)

According to the Formula 5.30, a value for the obstacle distance is calculated for the individual
vehicle at each time point t, regardless of how far the vehicle is from the obstacle. Since the costs
sum over the specified time horizon in the static form game (see the Chapter 5), this calculation
is not useful for analyzing the resulting cost Jobs, i. For this reason, a safety distance dobs, sa f e

is introduced so that only if this distance dobs, sa f e is undercut, the cost Jobs, i is calculated with
respect to the shortest distance dobs, s to the obstacle for the respective vehicle i.

5.4. Modeling other relevant cost functions

In the following Chapters the cost functions of quadratic velocity in Chapter 5.4.1, steering angle in
Chapter 5.4.2 and acceleration in Chapter 5.4.3 are explained. These cost functions do not directly
avoid collisions, but must be taken into account for a safety-related consideration of a game.

5.4.1. Cost function quadratic velocity

The basis for the cost function quadratic velocity is the defined speed limit vL. Since in the context
of this work also uncertainties and thus also uncertainties in the speed v are considered, it is
meaningful for the speed limit vL to consider both an upper bound vLU B and a lower bound vLLB.
Considering the speed limit tolerance vT , the following boundaries for the speed limit vL result:
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vLU B = vL + vT (5.31)

vLLB = vL − vT (5.32)

In the cost function quadratic velocity only the deviation from the speed limit vL or the boundaries
of the speed limits vLU B and vLLB leads to the cost of a vehicle i Jvel, i. For this reason, the
boundaries of the speed changes ∆vLU B, i and ∆vLLB, i of the vehicle i versus the boundaries of the
speed limit are calculated from Formula 5.31 and Formula 5.32.

∆vLU B, i = |vLU B − vi| (5.33)

∆vLLB, i = |vLLB − vi| (5.34)

The cost Jvel, i for the respective vehicle i whose speed vi is above the upper bound of the speed
limit vLU B is calculated according to Formula 5.35. If the speed vi is below the lower bound of
the speed limit vLLB, the costs are calculated according to Formula 5.36 under consideration of a
factor Kvel , which provides the under run of the lower bound of the speed limit with lower costs.
If the speed vi of the vehicle i is within the bounds, there is no cost for the vehicle i.

Jvel, i = ∆vLU B,
2
i with vi > vLU B, i (5.35)

Jvel, i = Kvel ·∆vLLB,
2
i with vi < vLLB, i (5.36)

5.4.2. Cost function steering angle

In active steering systems, the system reduces the steering angle δi at high speeds, enabling better
directional stability and safe steering movements that contribute to driving safety (Herold et al.,
2008; Pfeffer and Harrer, 2013). This principle is also used to define the cost of the steering angle
Jst eer, i in the context of this work. The higher the velocity vi of the vehicle i, the higher the cost
of the steering angle Jst eer, i as a function of the squared velocity v2

i .

Jst eer, i = |δi · v2
i | (5.37)

52



CHAPTER 5. CREATION OF THE NORMAL FORM GAME

5.4.3. Cost function acceleration work

In general, if a constant force F acting along a distance s, the mechanical work W is performed
by the force F on the distance s. Accordingly, the mechanical work W is the scalar product of the
force F and the distance x (Stolz, 1995; Bartelmann et al., 2018).

W := F⃗ · x⃗ = F · cos(α) · s = Fs · s (5.38)

Formula 5.38 assumes that the force F acts along the path s. Here Fs defines in Figure 5.7 the
component of the force F that is in the path direction s (Rinner, 2018).

Figure 5.7.: Definition of mechanical work according to Rinner (2018)

Basically, the forms of mechanical work can be divided into acceleration work, stroke work and
stress work. Acceleration work ∂W according to Formula 5.39 is the work done when a constant
force F accelerates a body in the direction of the force F . If a force F acts on a body at rest, it
is accelerated and performs acceleration work ∂W (Stolz, 1995; Bartelmann et al., 2018; Rinner,
2018)

∂W = F ·∂ s (5.39)

According to the 2nd Newtonian axiom the following applies to the force F

F = m ·a =
∂v
∂ t

(5.40)

and in general the following applies to the velocity v
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∂x = v ·∂ t (5.41)

The equations 5.39 and 5.41 together result in

∂W = m · v ·∂v (5.42)

Integrating the Formula 5.42 provides the acceleration work to accelerate a mass m from rest to
velocity v (Lüders and Pohl, 2017):

W =
1
2
·m · v2 (5.43)

In the context of this work, the velocity difference ∆vi is used for the velocity v in Formula
5.43, because otherwise there would be a continuous cost for the cost function acceleration. The
velocity difference ∆vi in Formula 5.45 is calculated from the amount of the difference between
the initial velocity vi and the final velocity v f , i of the respective vehicle i. The final velocity v f , i

can be calculated using Formula 5.44, where ai is the acceleration of the vehicle i and t is the time
horizon of the game.

v f , i = ai · t + vi (5.44)

∆vi = |vi − v f , i| (5.45)

Based on the Formula 5.43 and Formula 5.45 the cost of acceleration work in this work for the
individual vehicle i is calculated as follows:

Jacc, i =
1
2
·mi ·∆v2

i (5.46)
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5.5. Optimization of the cost function with the use of

worst cases

As explained in Chapter 4.5, certain variables and parameters are optimized during optimization.
In the following Chapters 5.5.1 to 5.5.6 the optimized cost functions of the Chapters 5.3 and 5.4
are explained.

5.5.1. Optimization of cost function collision energy

The worst case for the cost function collision energy can be defined as the largest speed difference
between two vehicles. To obtain the largest possible speed difference between two vehicles accor-
ding to Formula 5.17 and Formula 5.18, the maximum of the final speed of the two vehicles
according to Formula 5.47 must be considered. Thus, the Formula of the speed difference according
to Formula 5.16 is optimized as a function according to Chapter 4.5.

max(V) = max(
1

m1 +m2
·
√
(m1 · v1s)2 +2 ·m1 ·m2 · v1s · v2s · cosα +(m2 · v2s)2) (5.47)

5.5.2. Optimization of cost function Time-to-Collision

The worst case for the cost function TTC can be defined as the shortest distance between two
vehicles. The lower the shortest distance dT T C, s between two vehicles, more lower is the TTC.
As already explained in Chapter 5.3.2, a too low TTC entails not being able to react sufficiently to
a hazardous situation (Lehsing, 2019; BMWI, 2020; Saffarzadeh et al., 2013). Based on this, the
minimum of the Formula 5.21 is determined in the course of optimization according to Chapter
4.5. Moreover, since the cost of the cost function TTC according to Formula 5.22 and Formula 5.23
is speed dependent, the upper bound of the speed vi of a vehicle i is considered as the optimized
input of the cost function. The upper bound represents the maximum possible speed max(vi) of
the respective vehicle i, where the cost of the respective vehicle becomes larger with higher speed.
Thus, the combination of the shortest distance min(dT T C, s) and the maximum possible speed
max(vi) represents the worst case for the cost function TTC, whose optimized cost Jo pt , i for the
respective vehicle i can thus be determined according to Formula 5.48:

Jo pt , i = min(T TCi) ·max(vi)
2 (5.48)
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5.5.3. Optimization of cost function center lane offset

The worst case can be defined for the cost function center lane offset from Chapter 5.3.3 can be
defined as the largest distance between the respective vehicle i and the center lane. The larger
the shortest distance dclo, s between the vehicle and the center lane, the larger the cost Jclo, i

provided that the shortest distance to the center lane dclo, s is larger than the tolerable distance
to the center lane dt ol, clo defined by Formula 5.24. Moreover, since the cost function center lane
offset according to Formula and Formula is speed dependent, the upper bound of the speed vi of
a vehicle i is considered as the optimized input of the cost function. The upper bound represents
the maximum possible speed max(vi) of the respective vehicle i, where the cost of the respective
vehicle becomes larger with higher speed. Thus, the combination of the largest shortest distance
to the center lane max(dclo, s) and the highest speed max(vi) represents the worst case for the cost
function center lane offset, whose optimized cost Jo pt , i for the respective vehicle i can thus be
determined according to Formula 5.49.

Jo pt , clo, i = max(dcl, s) ·max(vi)
2 (5.49)

5.5.4. Optimization of cost function Euclidean distance

The worst case can be defined for the cost function Euclidean distance between two vehicles from
Chapter 5.3.4 as the shortest distance between two vehicles. The smaller the shortest distance
deucl, s between two vehicles, the larger the cost Jeucl, i. Moreover, since the cost of the cost
function Euclidean distance according to Formula 5.27 is speed dependent, the upper bound of the
speed vi of a vehicle i is considered as an optimized input of the cost function. The upper bound
represents the maximum possible speed max(vi) of the respective vehicle i, where the cost of the
respective vehicle becomes larger with higher speed. Thus, the combination of the shortest distance
deucl, s and the highest speed max(vi) represents the worst case for the cost function euclidean
distance, whose optimized cost Jo pt , i for the respective vehicle i can thus be determined according
to Formula 5.50 and Formula 5.51:

Jo pt , eucl, i = Klow, i ·min(deucl, s) ·max(vi)
2 (5.50)

Jo pt , eucl, i = Ku p, i ·min(deucl, s) ·max(vi)
2 (5.51)
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5.5.5. Optimization of cost function obstacle distance

The worst case can be defined for the cost function obstacle distance from Chapter 5.3.5 can be
defined as the shortest distance between a vehicle and an obstacle. The smaller the shortest distance
deucl, s between the vehicle and the obstacle, the larger the cost Jobs, i. Moreover, since the cost
of the obstacle distance cost function according to Formula 5.30 is speed dependent, the upper
bound on the speed vi of a vehicle i is considered as the optimized input of the cost function. The
upper bound represents the maximum possible speed max(vi) of the respective vehicle i, where
the cost of the respective vehicle becomes larger with higher speed. Thus, the combination of
the shortest distance dobs, s and the highest speed max(vi) represents the worst case for the cost
function euclidean distance, whose optimized cost Jo pt , i for the respective vehicle i can thus be
determined according to Formula 5.52.

Jo pt ,obs, i = min(dobs, s) ·max(vi)
2 (5.52)

5.5.6. Optimization of the other relevant cost functions

When optimizing the other relevant cost functions from Chapter 5.4, which are also considered
and optimized due to their safety relevance, no functions are optimized in contrast to the collision-
avoiding cost functions. For these cost functions, only the input of the respective cost function
is optimized. For the cost function quadratic velocity from Chapter 5.4.1 as well as for the cost
function acceleration work from Chapter 5.4.3 the upper bound of the velocity is considered as
optimized input, where the upper bound represents the maximum possible velocity of the respective
vehicle. In the cost function quadratic velocity as well as in the cost function acceleration work
the costs for the respective vehicle become larger with higher velocity. Thus, the upper bound of
the speed for these two cost functions represents the worst case.

Also for the cost function steering angle from Chapter 5.4.2 the costs become larger with higher
speed for the respective vehicle. In contrast to the cost functions quadratic velocity and acceleration
work, the costs of the cost function steering angle also increase with a higher steering angle. Thus,
only the combination of the upper bound of the velocity and the upper bound of the steering angle
represents the worst case for the cost function steering angle.
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5.6. Definition of combinations of cost functions

Within this Chapter, reasonable combinations are defined based on the previously defined cost
functions. The cost functions of the quadratic speed, the steering angle and the acceleration from
Chapter 5.4 are considered in each combination of cost functions and therefore not listed separately
in the explanation of the cost function combination.

Since the cost function euclidean distance and the cost function TTC take into account the
shortest distance between the two vehicles as the basis of their cost calculation, it does not make
sense to simulate a combination of these cost functions. A combination of these two cost functions
based on the shortest distance would only show the redundancy between the two functions. There-
fore, reasonable cost calculations between the collision-avoiding cost functions are the following:

• cost function collision energy and cost function TTC

• cost function collision energy and cost function Euclidean distance

• cost function collision energy, cost function center lane offset and cost function TTC

• cost function collision energy, cost function Euclidean distance and cost function center lane
offset

These listed combinations can be combined with the cost function obstacle distance to show on
the basis of simulation results how the costs of the cost function combinations behave if they are
triggered with an obstacle according to cost function obstacle from Chapter 5.3.5. The defined
cost function combinations are also each combined with the cost functions for quadratic velocity,
acceleration, and steering angle. In order to be able to weight the combinations of cost functions,
factors are defined for the cost functions that are intended to avoid collisions. These are defined in
the following list:

• weighting factor collision energy: Kl, ce

• weighting factor TTC: Kl,T T C

• weighting factor center lane offset: Kl, clo

• weighting factor euclidean distance: Kl, eucl

• weighting factor obstacle distance: Kl,obs
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The factors for the cost functions, which do not directly avoid collisions, are defined in the
following list:

• weighting factor quadratic velocity: Kl, vel

• weighting factor steering angle: Kl, st eer

• weighting factor acceleration: Kl,acc
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6. Simulation of the cost function in
a normal form game

As explained before, reasonable cost functions as well as reasonable combinations of the cost
functions shall be defined within the scope of this work. In order to check whether the cost
functions from Chapter 5.3, which are intended to serve the avoidance of collisions, and from
Chapter 5.4, which, however, do not directly serve the avoidance of collisions, must, however, be
taken into account for reasons already explained, the cost functions are checked using the scenarios
from Chapter 5.2.

The time horizon thorizon is set to 3.0 s according to Chapter 5.1. This time horizon thorizon has
been chosen because within this time horizon all noteworthy results and trends of the cost evolution
of a cost function can be represented. Moreover, the first simulation experiments have shown that a
larger time horizon thorizon would increase the simulation time by a multiple. The parameters that
generally apply to the lanes of the scenarios are listed in Table 6.1. Lane 1 represents the upper
lane and lane 2 the lower lane in the scenarios from Chapter 5.2.

lane width speed limit y-position center y-position center
lane 1 lane 2

3.5 m 27.7778 m/s 1.75 -1.75

Table 6.1.: Lane parameter

The uncertainties are defined in Chapter 5.1, as explained before. The effects of the uncertainties
on the vehicle trajectory can be visualized by the Figure 6.1. For the vehicle on the upper lane in
the left graph, uncertainties are not considered in the initial state of the vehicle as well as in the
strategy of the vehicle. On the lower lane, however, uncertainties are considered in the initial state
of the vehicle but no uncertainties are considered in the strategy of the vehicle. The left graph thus
illustrates representative how uncertainty in the initial state affects the trajectory of the vehicle
over a time interval of 3.0 s. When uncertainties in the vehicle’s strategy are also considered in
addition to the uncertainties in the initial state, it can be seen in the upper right graph that the
range of the vehicle’s possible trajectory becomes larger. To illustrate the effect of the speed at the
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same uncertainties, in the lower right graph a vehicle is simulated, which drives at a low speed at
the same uncertainties in the initial state and in the strategy of the vehicle. The differences in the
speeds show in the right graph that the higher the speed of a vehicle, the larger the range that the
trajectory shows over a time interval of 3.0 s.

Figure 6.1.: Visualization of the effects of uncertainties on the vehicle trajectory

Concerning the strategy of acceleration according to Formula 5.3 in the simulation of cost
functions it is distinguished in no acceleration and in acceleration of a free-time driver according
to Schach et al. (2006) of 1.0 m/s. With the help of this distinction the effects and impacts of the
strategy of acceleration in the simulation of the cost functions shall be clarified.

6.1. Simulation for single cost functions

Within this Chapter, the cost functions from Chapter 5.3 and Chapter 5.4 are simulated individually
and evaluated and assessed with respect to the scenarios from Chapter 5.2. As can be seen from
the results, it is difficult to interpret the calculated NE from the payoff matrices of the respective
vehicles. The reason for this is that the uncertainties make interpretation difficult and the cost
functions also show individual weaknesses. Therefore, an interpretation of the NE in the context
of this work is not expedient and is therefore not considered further.

6.1.1. Simulation for cost function collision energy

In Table A.1 in Appendix A.1 several reasonable maneuvers were simulated for scenario 1. In
each of these maneuvers, vehicle 1 changes back to its actual lane from which vehicle 1 started the
overtaking maneuver. From the results, it is clear that regardless of the strategy, there is no cost
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for either vehicle 1 or vehicle 2. In the second scenario, a possible overtaking maneuver would
not produce any significant results, since the two vehicles in scenario 2 are behind each other and
would therefore not cause a collision, provided that the vehicles act rationally and no misbehavior
by one of the two vehicles is to be expected.

Figure 6.2.: Visualization of the maneuvers CE2.1 and CE2.2 of the first scenario in relation to the
cost function collision energy

As shown in maneuver CE1.13 in Figure 6.2 on the left, the states of the two vehicles, which are
shown as dots, do not overlap at a defined time thorizon, so that, due to the head start of the vehicle
2 in front, the two vehicles cannot collide. If only vehicle 1 chooses the strategy to accelerate with
1 m/s (cf. maneuver CE2.2 in Figure 6.2), vehicle 1 overtakes vehicle 2 on the same lane in the
defined time horizon thorizon. Under real conditions, the two vehicles would cause a collision in this
case and, consequently, costs would be incurred for this maneuver CE2.2 in scenario 2. However,
as the Table A.2 shows, there are no costs for either vehicle in the second scenario. Calculated over
a higher time horizon and without acceleration of vehicle 1 (cf. maneuver CE2.3 in Table A.2),
the states vehicle 1 will also overtake vehicle 2, so that a potential collision is possible taking into
account the uncertainties and strategies of the two vehicles and must lead to costs.

As can be seen in Table A.3, there is no cost to either vehicle for the reasonable maneuvers in
scenario 3. As long as the vehicles continue to follow their respective lanes, they will not cause
collisions, even when uncertainty is taken into account. Since it is possible under real conditions
that both vehicles could start an overtaking maneuver of a third vehicle and carry it out, collisions
are potentially possible, as visualized in the following Figure 6.3.

In the simulation results for the cost function collision energy in the Appendix A.1 it becomes
clear that in all payoff matrices of the considered maneuvers of the three scenarios over the time
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Table 6.2.: Simulation results of the second scenario for the cost function collision energy

horizon thorizon there are no costs for the two vehicles and thus according to the payoff matrices
and the formulated cost function the two vehicles do not cause a collision. The reason for this
is that the simulation only considers points as states for the vehicle and therefore a collision only
occurs if the states overlap exactly. This is unlikely due to the different parameters, complexity and
the defined uncertainties and is therefore reflected in the simulation results for the cost function
collision energy. Due to the constant simulation results in Appendix A.1, the consideration of
NE is not useful for the cost function collision energy and is therefore not taken into account. In
Chapter 8 an approach is proposed, which addresses this problem and gives an outlook for future
work.

In the following, we calculate as an example which costs would result for the defined maneuver
CE2.3 from scenario 2 under real abstracted conditions. As explained before, under real conditions,
costs must result from these maneuvers for both vehicles, provided that both vehicles choose the
strategies from Formula 6.1 and Formula 6.2.

uveh1 = [[0.0,0.0], [0.0,0.0], [0.0,0.0]] (6.1)

uveh2 = [[0.0,0.0], [0.0,0.0], [0.0,0.0]] (6.2)

As the Figure 6.2 and Figure 6.3 illustrate, the first vehicle (red dots) overtakes the second
vehicle (blue dots) at a higher speed when both vehicles follow their strategies over a defined
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Figure 6.3.: Visualization of the simulation results of the maneuver CE3.12 of the third scenario in
relation to the cost function collision energy

period of time. Considering the vehicle states and strategies, an accident would occur under real
conditions. In the following, the actually expected simulation result for the previously explained
maneuver of scenario 2 with its vehicle parameters is calculated. According to the Formula 5.16
from Chapter 5.3.1, the calculation of the final velocity V at a certain time t with m1 = m2 =

1000 kg, v1s = 27.7778 m/s, v2s = 25.0 m/s and α = 0 gives the following result:

V =
1

m1 +m2
·
√

(m1 · v1s)2 +2 ·m1 ·m2 · v1s · v2s · cosα +(m2 · v2s)2 = 26.3889 m/s (6.3)

As already explained in Formula 5.17 and Formula 5.18, the velocity change of the two vehicles
△v1 and △v2 can be calculated as follows:

|△V1|= |V−v1s|= 1.3889 m/s (6.4)

|△V2|= |V−v2s|= 1,3889 m/s (6.5)

According to these calculations, the two △V values of the two vehicles should be in the range
of 5 km/h < △V < 10 km/h and have the corresponding costs. Since this cost function is not
meaningful in this form due to the unstated costs, it is necessary to combine this cost function with
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other cost functions in a meaningful way.

6.1.2. Simulation for cost function TTC

For the simulation of the cost function TTC in this work, a dT T C, sa f e of 3.4 m between the two
vehicles in the initial condition was chosen. The basis for this definition of the parameter dT T C, sa f e

is the distance between the two vehicles in scenario 1, which is 3.5 m. Since it is not reasonable
to calculate the cost in the initial condition and since uncertainties in the initial condition have
to be considered, the parameter dT T C, sa f e is defined accordingly. This is also reasonable for the
simulation results in the initial state, since there is no cost for either vehicle in the initial state,
since holds:

ds > dT T C, sa f e (6.6)

If the defined safety distance dT T C, sa f e is not reached, both vehicles incur costs JT T C, since the
same safety distance dT T C, sa f e is defined for both vehicles. The simulation of the first scenario, as
defined in Chapter 5.2, an overtaking maneuver that vehicle 1 wants to complete. For this purpose,
vehicle 1 follows the strategy uveh1 to merge in front of vehicle 2 without incurring costs JT T C.
Since the costs are caused by falling below the safety distance, vehicle 1 must choose the strategy
uveh1 depending on the strategy of vehicle 2 uveh2 in such a way that the safety distance dT T C, sa f e

is not undercut. Since in scenario 1 only for vehicle 1 a strategy regarding the steering angle
acceleration ωu is a reasonable strategy, it is not considered for vehicle 2.

The simulation results of maneuver TTC1.1 and maneuver TTC1.2 in Table A.5 show that the
larger the steering angle acceleration strategy ωu, the larger the cost JT T C becomes for the two
vehicles. Based on Figure 6.4, this can be understood as vehicle 1 approaches vehicle 2 over the
defined time horizon thorizon faster with a high strategy of steering angle acceleration ωu than with
a small strategy chosen. Since the cost function according to Formula 5.22 as well as Formula
5.23 is speed-dependent and the two vehicles complete their driving task at different speeds, the
costs of the cost function TTC are calculated individually for the two vehicles and are therefore
not identical for scenario 1.

Provided that in the strategy of vehicle 1 the strategy of acceleration au with 1 m/s is considered,
already for lower strategies in the steering angle acceleration ωu costs arise for both vehicles,
since the vehicle reaches a higher speed over the defined time horizon thorizon due to the constant
acceleration and thus the shortest distance ds between the two vehicles exceeds the safety distance
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Figure 6.4.: Visualization of the simulation results of the maneuver TTC1.1 of the first scenario in
relation to the cost function TTC

dT T C, sa f e for lower strategies in the steering angle acceleration ωu (cf. TTC1.3 and TTC1.4 in
Table A.5). Similar effects are observed for the acceleration of vehicle 2 (cf. TTC1.5 and TTC1.6
in Table A.5). Due to the higher speed of vehicle 2 caused by the constant acceleration, the shortest
distance ds between the two vehicles falls below the safety distance dT T C, sa f e at an earlier time t,
consequently the cost for the two vehicles already increases for smaller strategies in the steering
angle acceleration ωu. Another effect shown by the simulation results in Table A.5 that the costs
for the two vehicles become smaller again at a certain increasing steering angle acceleration ωu.
The reason for this is that the steering angle acceleration is so large from a certain value that the
shortest distance ds between the two vehicles within the defined time horizon thorizon becomes
larger than the safety distance dT T C, sa f e again from a certain point in time t and therefore no more
costs are generated, which reduces the cost value for the respective strategy.

Reasonable maneuvers of the second scenario, which have to be considered for the evaluation
of the cost function TTC and on which the results of the simulation can be explained, are only
formed considering the strategy of acceleration au of vehicle 1. The reason for this is that without
considering the strategy of acceleration au for vehicle 1, no costs JT T C arise for the two vehicles,
since the safety distance dT T C, sa f e is not undercut for the defined time horizon thorizon (cf. TTC2.1
in Table 6.3). However, as long as both vehicles follow the strategy of accelerating with au = 1m/s,
there is again no cost for either vehicle, since the shortest distance ds between both vehicles does
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not fall below the safety distance dT T C, sa f e in the defined time horizon thorizon (cf. TTC2.3 in
Table 6.3).

Table 6.3.: Simulation results of the second scenario for the cost function TTC

As the Table 6.3 in TTC2.4 and TTC2.5 illustrates, only for a strategy of steering angle accelera-
tion ωu >= 0.002 there is no cost for the two vehicles. Approximately from this strategy value of
steering angle acceleration ωu the shortest distance ds between the two vehicles is larger than
safety distance dT T C, sa f e thus satisfying the Formula 6.6. Within the scope of this work, an exact
strategy value for the steering angle acceleration is not determined.

The third scenario, as described in Chapter 5.2, illustrates the situation where two vehicles are
supposed to pass each other on different lanes. However, if certain strategy of steering angle
acceleration ωu of vehicle 1 is taken into account, there is a cost for the two vehicles that the
shortest distance ds falls below the safety distance dT T C, sa f e (cf. TTC3.2, TTC3.3 and TTC3.4
in Table A.6). Looking at the calculated costs of these maneuvers, it is noticeable that the costs
for the two vehicles start at a certain strategy of steering angle acceleration ωu, increase and then
decrease again until no costs are calculated again. The reason for this effect can be explained with
the Figure 6.5 based on TTC3.16.

From a certain value of the steering angle acceleration strategy ωu, which is not defined in more
detail in this work, the steering angle acceleration is so large that vehicle 1 has intersected the lane
of vehicle 2 before vehicle 2 passes the same point on the lane or the safety distance dT T C, sa f e can
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Figure 6.5.: Visualization of the simulation results of the maneuver TTC3.16 of the third scenario
in relation to the cost function TTC

be undercut. The situation is similar with a very small strategy of the steering angle acceleration
ωu. If this is very small, vehicle 1 intersects the trajectory of vehicle 2 at a time t in the time
horizon thorizon at which vehicle 2 has already reached a distance to this point that is above the
safety distance dT T C, sa f e, resulting in no costs for both vehicles.

The effects already explained for the cost function TTC can also be applied to other strategy
combinations within the scenarios. The simulation results are listed in the Appendix A.2.

6.1.3. Simulation for cost function center lane offset

As described in Chapter 5.3.3, the costs are influenced by the factor Ktwt , cl for two way traffic. In
the context of this work, only two way traffic is considered in the scenarios according to Chapter
5.2, so this factor can be excluded from the evaluation and interpretation of the simulation results
and thus this parameter does not need to be considered for the cost of the cost function of the
center lane offset. However, in future work this factor can be taken into account, provided that
different road types are considered in the scenarios of the simulation. Another factor that needs
to be defined as part of the simulation of the cost function center lane offset is the factor Kt ol, clo.
The factor Kt ol, clo is defined as 1/8 in the context of this work, so that a defined lane width of 3.5
m results in a tolerance range of 0.4375 m to the left and to the right of the lane center.
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In the first scenario, vehicle 1 is in an overtaking maneuver of vehicle 2, as described in Chapter
5.2. Accordingly, there is an enormous cost for vehicle 1 if it does not complete the overtaking
maneuver (cf. CLO1.1 in Table 6.4). Vehicle 2, on the other hand, is on the designated lane in the
first scenario and therefore there is only a small cost for CLO1.1. The small cost arises because
vehicle 2 leaves the defined acceptable tolerance range due to the defined uncertainties at a certain
time t in the time horizon thorizon, resulting in a cost Jclo. Provided that for the vehicle 2 the
strategy of acceleration au is considered, these costs increase, because the vehicle reaches a higher
speed due to the constant acceleration and thus the costs according to Formula 5.5.3 are higher for
the vehicle.

Table 6.4.: Simulation results of the first scenario for the cost function center lane offset

In general, based on the results from Table 6.4 for vehicle 1 in scenario 1, it can be concluded
that the lower the strategy of steering angle acceleration ωu is chosen, the lower the costs are for
vehicle 1. These results cannot be considered reasonable, since a slow approach to the lane should
cause higher costs than a fast approach. In the case of the simulation, this can be justified by the
fact that by choosing a strategy, vehicle 1 does not stop the simulation after reaching the center
of the lane, but follows the strategy over the entire time horizon thorizon, thus driving beyond the
center of the lane.

The simulation results in Table A.8 for vehicle 2 in the second scenario can be interpreted in
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the same way as in the first scenario, that vehicle 2 does not move away from the lane center with
respect to the sensible maneuvers, but only the strategy of acceleration au is considered. The first
vehicle, on the other hand, starts the overtaking maneuver, which causes the vehicle to move away
from the center of the lane. In this case, based on the simulation results in Table A.8, the statement
can be made that the higher the strategy of steering angle acceleration ωu is chosen, the greater the
cost for vehicle 1. The reason for this is that the defined tolerance range is exceeded at an earlier
point t with a larger steering angle acceleration strategy ωu and is therefore also further away
from the limit of the tolerance range at a later point in time than lower steering angle acceleration
strategies ωu.

The effects already explained for the cost function center lane offset can also be applied to other
strategy combinations within scenarios 1 and 2 as well as to scenario 3. The simulation results for
this are shown in Appendix A.3.

6.1.4. Simulation for cost function Euclidean distance

For the Euclidean distance cost function simulation in this work, a safety distance deucl, sa f e of 3.4
m between the two vehicles in the initial condition is chosen. The basis for this definition of the
parameter deucl, sa f e is the distance between the two vehicles in scenario 1, which is 3.5 m. Since
it is not reasonable to calculate the cost in the initial condition and since uncertainties in the initial
condition must be taken into account, the parameter deucl, sa f e is defined accordingly. This is also
reasonable for the simulation results in the initial state, since there is no cost for either vehicle in
the initial state, since holds:

ds > deucl, sa f e (6.7)

As long as the defined safety distance deucl, sa f e is not reached, costs Jeucl result for both
vehicles, since the same safety distance deucl, sa f e is defined for both vehicles. Since the cost
function Euclidean distance, as explained in Chapter 5.3.4, only determines the cost for vehicles
traveling on the same roadway, there is no cost for the two vehicles for both the first scenario and
the third scenario, since different roadways were defined for the two vehicles in Chapter 5.2. For
this reason, the attached simulation results in Table A.10 and Table A.12 in Appendix A.4.

Reasonable maneuvers of the second scenario, which have to be considered for the evaluation of
the cost function Euclidean distance and on which the results of the simulation can be explained,
are only formed considering the strategy of acceleration au of vehicle 1. The reason for this is that
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without considering the acceleration for vehicle 1, there are no costs for the two vehicles, since the
safety distance deucl, sa f e is not undercut for the defined time horizon thorizon (cf. ED2.1 in Table
A.11). However, if both vehicles follow the strategy to accelerate with au = 1 m/s, again no costs
arise for the two vehicles, since the shortest distance between both vehicles does not fall below the
safety distance deucl, sa f e for the defined time horizon thorizon (cf. ED2.3 in Table A.11).

Figure 6.6.: Visualization of the simulation results of the maneuver ED2.5 of the second scenario
in relation to the cost function Euclidean distance

As the results of the Table A.11 in ED2.4 and ED2.5 output and the Figure 6.6 visualizes, only
for a strategy of steering angle acceleration ωu >= 0.002 there is no cost for the two vehicles.
Approximately from this strategy value of steering angle acceleration ωu the shortest distance
ds between the two vehicles is larger than safety distance deucl, sa f e and thus the Formula 6.7 is
satisfied. Within the scope of this work, an exact strategy value for the steering angle acceleration
is not determined.

6.1.5. Simulation for cost function obstacle distance

For the cost function obstacle distance according to Chapter 5.3.5, the following obstacle state is
defined:

71



CHAPTER 6. SIMULATION OF THE COST FUNCTION IN A NORMAL FORM GAME

obstacle = [58,59], [−1.75,−1.75] (6.8)

Due to the implemented obstacle in the scenarios from Chapter 5.2 the reasonable maneuvers
in the scenarios change for the cost function obstacle distance, because otherwise the respective
vehicle would collide with the obstacle. Costs Jobs for the respective vehicle only arise if the
shortest distance between the respective vehicle and the obstacle dobs, s is smaller than the defined
safety distance dobs, sa f e of 3.4 m.

dobs, s > dobs, sa f e (6.9)

As the Figure 6.7 illustrates, the maneuver for the first scenario changes in that only vehicle 2
will pursue the intention to change lanes, as it would otherwise collide with the obstacle. As the
simulation results in Table A.13 in Appendix A.5 show, there is a cost to vehicle 1 if this vehicle
does not pursue a strategy. This cost arises from considering the uncertainties for Vehicle 1, which
can be seen in Figure 6.7, and increases when considering the strategy of acceleration au over
the defined time interval, since the shortest distance to the obstacle falls below the safety distance
due to a constant acceleration within the defined time interval at an earlier time (cf. OBS1.1 and
OBS1.2 in Table A.13). As can be seen from Table A.13 in maneuvers OB1.3 and OBS1.4, no
costs are generated for vehicle 2 only when a certain steering angle acceleration ωu is reached. An
exact threshold value, above which no costs are generated for vehicle 2, is not determined within
the scope of this work. Provided that for the strategy of vehicle 2 the acceleration au is considered
in addition to the steering angle acceleration ωu, it becomes clear from the maneuvers OBS1.5
and OBS1.6 that the costs for vehicle 2 increase. This is understandable since, for a constant
acceleration of vehicle 2, the shortest distance to the obstacle dobs, s at an earlier time is smaller
than the safety distance to the obstacle dobs, sa f e and, therefore, higher costs Jobs are incurred.

For the second scenario, the maneuvers change in that not only vehicle 1 starts to overtake
vehicle 2, but also vehicle 2 wants to pass the obstacle with the goal of generating as few costs
as possible. As can be seen from Table A.15 in the maneuvers OBS2.1 and OBS2.3, no costs are
generated for the front vehicle 2 only if a certain steering angle acceleration ωu is reached. An
exact limit value above which no more costs are generated for vehicle 2 is not determined in the
context of this work. If for the strategy of vehicle 2 the acceleration au is considered in addition to
the steering angle acceleration ωu, it becomes clear from the maneuvers OBS2.2 and OBS2.4 that
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Figure 6.7.: Visualization of the simulation results of the maneuver OBS1.4 of the first scenario in
relation to the cost function obstacle distance

the costs for vehicle 2 increase. This is understandable since, for a constant acceleration of vehicle
2, the shortest distance to the obstacle dobs, s at an earlier time is smaller than the safety distance
to the obstacle dobs, sa f e and therefore higher costs Jobs are incurred.

Table 6.5.: Simulation results of the second scenario for the cost function obstacle distance

The same effects can be seen for the following vehicle 1. In Table 6.5, even for a given strategy
of steering angle acceleration ωu, there is no cost Jobs for vehicle 1, since the shortest distance to
the obstacle dobs, s exceeds the safety distance to the obstacle dobs, sa f e. Also, for the consideration
of acceleration au, from the comparison with the maneuvers without considering acceleration, the
cost for vehicle 1 becomes lower than the safety distance at an earlier time when the acceleration
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of vehicle 1 is constant, and therefore the cost is larger in the defined time horizon.

For the third scenario, the maneuvers change in that vehicle 1 wants to overtake the obstacle
because it does not want to collide with the obstacle and does not want to generate a cost. As can be
seen from Table A.15 in maneuvers OBS3.6 and OBS3.7, no costs are generated for vehicle 1 only
when a certain steering angle acceleration ωu is reached. An exact threshold value, above which
no costs are generated for vehicle 1, is not determined within the scope of this work. Provided
that for the strategy of vehicle 1 the acceleration au is considered in addition to the steering angle
acceleration ωu, it becomes clear from the maneuvers OBS3.4 and OBS3.5 that the costs for vehicle
1 increase. This is understandable since, for a constant acceleration of vehicle 1, the shortest
distance to the obstacle dobs, s at an earlier time is smaller than the safety distance to the obstacle
dobs, sa f e and therefore higher costs Jobs are incurred. There is no cost for vehicle 2 because it does
not fall below the safety distance (cf. OBS3.1 in Table A.15). Also considering the acceleration
(cf. OBS3.2 in Table A.15) as well as considering a large strategy value of the steering angle
acceleration ωu (cf. OBS3.3 in Table A.15), there are no costs Jobs for vehicle 1, since the safety
distance is not undercut.

6.1.6. Simulation for cost function quadratic velocity

For the cost function quadratic velocity, the following general conditions are defined in this work.
The speed limit tolerance vT , which was already explained in Chapter 5.4.1, is defined as 1 m/s, so
that costs are only incurred for the respective vehicle if the deviation of the speed of the respective
vehicle from the speed limit is greater than the speed limit tolerance range. With a defined speed
limit vL of 27.7778 m/s, costs are only calculated for the respective vehicle for speeds outside the
tolerance range of 26.7778 m/s to 28.7778 m/s. As explained in Chapter 5.4.1, for a low speed
than the defined tolerance range, the factor Kvel was introduced to be able to weight the cost Jvel, i

lower for a low speed. In the context of the simulation, this factor Kvel is defined as 0.1, so that the
effects of the differences can be clearly identified and evaluated from the results.

In the first scenario there are no costs for vehicle 1, because the speed of vehicle 1 is defined
with a speed of 27.7778 m/s and thus corresponds exactly to the speed limit vL. Due to the defined
tolerance range, the considered uncertainties can be absorbed for the defined time horizon thorizon

= 3.0 s, so that no costs arise for vehicle 1 due to the consideration of uncertainties. Vehicle
2 is outside the tolerance range with a velocity vveh2 = 25.0 m/s, so that costs arise for this
vehicle. These conclusions are supported by the results for scenario 1 in Table 6.6 in Appendix
A.6. Furthermore, these results show that the cost Jvel, i does not change with the steering angle
acceleration strategy ωu. This result is to be expected since, according to Chapter 5.4.1, the steering
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angle acceleration ω cannot affect the cost function quadratic velocity. As the following Table 6.6
shows, a change in acceleration a, and therefore choosing a strategy au that includes a value for
acceleration a, affects the payoff matrices of the two vehicles. The larger the acceleration of the
vehicle, the larger the cost of that vehicle will be, since acceleration logically affects speed. Since
the selected strategy for acceleration is a constant acceleration over the defined time horizon, the
cost becomes larger over a larger time horizon thorizon, as VQ1.10 in Table 6.6 shows.

Table 6.6.: Simulation results of the first scenario for the cost function quadratic velocity

By squaring the speed difference according to Formula 5.35 and Formula 5.36, stronger devia-
tions result in larger costs (see VQ1.12). However, a difference in the deviation in velocity becomes
apparent when the two results for the two vehicles in VQ1.11 are compared. In this maneuver the
speeds of vehicle 1 were adjusted to 30.5556 m/s and of vehicle 2 to 26.3889 m/s and thus the
speed difference for both vehicles to the speed limit vL is 1.38889 m/s, whose value is above the
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tolerance limit of 1 m/s and thus causes costs for both vehicles. Based on the cost calculation
according to Formula 5.35, the same costs should be calculated for both vehicles, since it is the
same speed difference. In this case, however, the factor for undercutting the speed limit vL comes
into effect, which means that only about 10 percent of the costs according to Formula 5.36 can be
calculated for the slower vehicle 2 by the factor of 0.1, taking into account the uncertainties.

Since the strategy of angular acceleration ωu does not affect the cost function quadratic velocity
and the angular acceleration has decisive changes in the scenarios due to the maneuvers, the same
results have been simulated in scenarios 2 and 3 and its maneuvers. Therefore, the Table A.17
and Table A.18 in Appendix A.6 show the same results as Table 6.6, which can therefore also be
interpreted in exactly the same way.

6.1.7. Simulation for cost function steering angle

Based on the definition of the cost function steering angle from Chapter 5.4.2 in which the depen-
dence of the costs according to Formula 5.37 on the steering angle and speed is defined, individual
results are to be expected for the simulation results both when changing the strategy of the steering
angle acceleration ωu and when changing the strategy of the acceleration au. In the following
Table 6.7 excerpt from Appendix A.7 for the first scenario, when comparing the results for the
ST1.1 maneuver, it is clear that even with a strategy of no steering angular velocity ωu, there is
a cost for the respective vehicles. The reason for this is the consideration of uncertainties in the
strategy and initial state for the steering angle as defined in Chapter 5.1. Since the two vehicles
drive at different speeds, different results are obtained due to the dependence of the cost function
steering angle on the speed according to Formula 5.37. The higher the speed of the vehicle, the
higher the cost of the respective vehicle. Considering the strategy with acceleration au, among
others, it becomes clear in Maneuver ST1.2 in Table 6.7 that acceleration has an impact on the cost
of the cost function steering angle. This can be justified by the fact that the constant acceleration
contributes to the fact that the speed of the vehicles increases. Due to the speed dependence of
the cost function according to the Formula 5.37, the costs for the respective vehicle increase under
consideration of the acceleration strategy.

Considering a strategy regarding the steering angle acceleration ωu for vehicle 1 in scenario, it
can be concluded based on the results for maneuver ST1.3 and maneuver ST1.4 from Table 6.7 that
the larger the strategy of the steering angle acceleration ωu, the larger the cost for the respective
vehicle. From this result was expected based on the defined Formula 5.37 for the cost of the cost
function steering angle. The simulation results in Appendix A.7 for the reasonable maneuvers in
Scenario 2 (cf. Table A.20) and Scenario 3 (cf. Table A.21) support the results explained earlier.
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Table 6.7.: Excerpt of the simulation results of the first scenario for the cost function steering angle
from Table A.19 from Appendix A.7

6.1.8. Simulation for cost function acceleration work

The simulation of the cost function acceleration from Chapter 5.4.3 is also similar to the simulation
of the cost function quadratic velocity, since the strategy of the steering angle acceleration ωu

has no effect on the cost function and therefore no costs can arise for the respective vehicle
when choosing a strategy with respect to the steering angle acceleration ω . The results for the
first scenario AC1.1 to AC1.4 in Table A.22 show the simulation results for the cost function
acceleration with different strategies for the steering angle acceleration for the two vehicles.

The Formula 5.46 from Chapter 5.4.3 shows that only with changes in the strategy for the
acceleration au in rad/s or a change in speed can costs arise for the respective vehicle. Maneuvers
AC1.5 to AC1.7 of the first scenario in Table A.22 show how the costs for the respective vehicles
behave for different strategies for acceleration au. The results for AC1.5 to AC1.7 show that the
larger the strategy for acceleration au chosen by a vehicle, the larger the cost Jacc, i for this chosen
strategy. When the simulation results of AC1.7 are compared with the results of AC1.8, whose
strategies were simulated over a larger time horizon of thorizon = 4.0 s, it can be seen that the cost
Jacc, i also increases over a larger time horizon. This can be explained by the fact that the strategy is
a constant one, which is chosen over the whole period. Thus, the costs with respect to this strategy
are also calculated over the entire period.

Since the cost function acceleration is independent of the strategy of the steering angle accelera-
tion ωu and only the acceleration a causes costs Jacc, i, there are also no changes in the simulation
results of the other two scenarios, since the main difference between the scenarios is the reasonable
strategy choice of the steering angle acceleration ω . The determined and simulated values for the
different strategies of acceleration in Table A.23 and Table A.24 in Appendix A.8 confirm this.
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Table 6.8.: Visualization of the simulation results of the first scenario for the cost function
acceleration work

6.2. Simulation for combinations of cost functions

Based on the simulation results of the cost function collision energy from Chapter 6.1.1 and since
there is no exact match of points due to the consideration of points in the simulation, there is no
cost for the cost function collision energy. Thus, it does not make sense to form combinations with
the cost function collision energy. Based on these findings, the following reasonable combinations
of the safety-relevant cost functions remain:

• cost function center lane offset and cost function Euclidean distance

• cost function center lane offset, cost function Euclidean distance and cost function obstacle
distance

• cost function center lane offset and cost function TTC

• cost function center lane offset, cost function TTC and cost function obstacle distance

Considering the defined weighting factors from Chapter 5.6, the following formulas result for
the defined combinations of cost functions:
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Jclo, eucl = Jclo, i ·Kl, clo + Jeucl, i ·Kl, eucl (6.10)

Jclo, eucl,obs = Jclo, i ·Kl, clo + Jeucl, i ·Kl, eucl + Jobs, i ·Kl,obs (6.11)

Jclo, t t c = Jclo, i ·Kl, clo + JT T C, i ·Kl,T T C (6.12)

Jclo,T T C,obs = Jclo, i ·Kl, clo + JT T C, i ·Kl,T T C + Jobs, i ·Kl,obs (6.13)

The defined combinations of the cost functions can also be combined with the cost Jvel, i and
weighting factor Kl, vel for the quadratic velocity, the cost Jacc, i and weighting factor Kl,acc for
the acceleration, and the cost Jst er, i and weighting factor Kl, st er for the steering angle combined.
Within the scope of this work, no simulations are performed regarding the weighting of combined
cost functions, since the weighting of the functions would result in the basis of many assumptions.
Furthermore, due to the numerous weighting possibilities, there would be numerous simulation
possibilities, which would be beyond the scope of this work. However, as justified earlier, the
cost functions that avoid collisions should be weighted higher than the cost functions that address
passenger comfort and regulatory compliance. Chapter 8 takes the reference to the simulation and
weighting of the cost function and gives an outlook on how this can be addressed in further work.
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7. Simulation of the optimized cost
functions in a normal form game

In this Chapter, the optimized cost functions from Chapter 5.5 are simulated individually and
evaluated and assessed with respect to the scenarios from Chapter 5.2. The optimized cost functions
are simulated and evaluated using the same strategies as the cost functions from Chapter 5.3 and
Chapter 5.4. As can be seen from the results, it is difficult to interpret the calculated NE from
the payoff matrices of the respective vehicles. The reason for this is that the uncertainties make
interpretation difficult and the cost functions also show individual weaknesses. Therefore, an
interpretation of the NE in the context of this work is not expedient and is therefore not considered
further.

7.1. Simulation for the optimized cost function collision

energy

In the simulation results for the optimized cost function collision energy in the Appendix B.1, it is
clear that in all payoff matrices of the considered maneuvers of the three scenarios over the time
horizon thorizon, as in Chapter 6.1.1, there is no cost to the two vehicles and thus the two vehicles
do not collide according to the payoff matrices and the formulated cost function. As explained
earlier, the reason for this is that the simulation only considers points as states for the vehicle and
therefore a collision only occurs if the states overlap exactly. This is unlikely due to the different
parameters, complexity and the defined uncertainties and is therefore reflected in the simulation
results for the cost function collision energy and in the simulation results for the optimized cost
function collision energy. Accordingly, a comparison between the simulation results of the two
cost functions for collision energy is not possible within the scope of this work.
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7.2. Simulation for optimized cost function TTC

For the optimized cost function TTC, the same conditions and assumptions apply as for the cost
function TTC from Chapter 6.1.2. Thus, also for this cost function, costs arise for the respective
vehicles if the shortest distance ds between the two vehicles falls below the safety distance dT T C, sa f e

of 3.4 m.

For the second scenario, in which the two vehicles drive behind each other according to Chapter
5.2, it can be derived from Table B.5 that by optimizing the cost function already at an earlier time
t in the defined time horizon the safety distance dT T C, sa f e is undercut by the shortest distance
between the two vehicles ds (cf. maneuver TTC2.2 and maneuver TTC2.2opt). This effect occurs
only for the strategies that have already yielded costs for the cost function TTC. If the maneuver
TTC2.5 is considered, which represents an overtaking maneuver of the first vehicle, it can be
interpreted from the results that vehicle 1 is closer to vehicle 2 in this overtaking maneuver due
to the higher costs than in the cost function TTC, whose distance does not correspond to the
worst case. The explained effects for the second scenario of the optimized cost function obstacle
distance also occur in the other two scenarios and can therefore be interpreted in the same way.
The simulation results for scenario 1 and scenario 3 can be seen in Table B.4 and Table B.6in
Appendix B.5.

When comparing the simulation results between cost function TTC and the optimized cost
function TTC, for example, when comparing maneuvers TTC1.1 and TTCopt1.1, it is noticeable
that the costs are lower for the optimized cost function and consequently cannot represent the
expected worst case. These results are due to the fact that the costs in relation to the worst case TTC
according to Formula 5.22 and Formula 5.23 consist of the worst case of the minimum distance
and the worst case of the maximum speed.

7.3. Simulation for optimized center lane offset

For the optimized cost function center lane offset from Chapter 5.3.3 the same conditions and
assumptions apply as simulation for the cost function center lane offset from Chapter 6.1.3. There-
fore, also for this cost function a tolerable distance factor to the lane center Kt ol, clo of applies,
so that a defined lane width of 3.5 m results in a tolerance range of 0.4375 m to the left and right
side of the lane center. Thus, also for this cost function, costs arise for the respective vehicle if the
distance to the lane center exceeds the tolerable distance Kt ol, clo.

For the first scenario it can be derived from Table B.7that by optimizing the cost function already
at an earlier time t in the defined time horizon the tolerable distance factor to the lane center
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Kt ol, clo is exceeded, since the optimization determines the largest possible distance from the lane
center, which in the case of this cost function represents the worst case. Also with respect to the
strategy of the steering angle acceleration ωu it is noticeable that, for example, in the comparison
of maneuver CLO1.5 and maneuver CLOopt1.4 with the optimized cost function already for lower
strategies of the steering angle acceleration ωu higher costs arise for the respective vehicle, since
the tolerable distance factor to the lane center Kt ol, clo is exceeded at an earlier time. Similarly
for the cost considering the strategy of acceleration au. Again, by optimizing the cost function
in the worst case, the distance to the center lane becomes larger than in the simulation results
of the cost function center lane offset from Chapter 6.1.3. However, these differences to the
cost function center lane offset are so small that they are not visually noticeable, which is why
a visual representation of the trajectories of the cost function is omitted in the comparison. Figure
7.1 illustrates exemplarily the simulation of the cost function center lane offset of the maneuver
CLOopt2.6.

Table 7.1.: Visualization of the simulation results of the maneuver CLOopt2.6 of the second
scenario in relation to the cost function obstacle distance

The effects explained for the first scenario of the optimized cost function center lane offset also
occur in the other two scenarios and can therefore be interpreted in the same way. The simulation
results for scenario 2 and scenario 3 can be seen in Table B.8 and Table B.9in Appendix B.3.

7.4. Simulation for optimized cost function Euclidean

distance

For the optimized cost function Euclidean distance, the same conditions and assumptions apply
as for the simulation results cost function Euclidean distance from Chapter 6.1.4. Thus, also for
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this cost function, costs arise for the respective vehicles if the shortest distance ds between the two
vehicles falls below the safety distance deucl, sa f e of 3.4 m.

For the second scenario, in which the two vehicles drive behind each other according to Chapter
5.2, it can be derived from Table B.11 that by optimizing the cost function already at an earlier
time t in the defined time horizon the safety distance deucl, sa f e is undercut by the shortest distance
between the two vehicles ds (cf. maneuver ED2.2 and maneuver ED2.2opt). This effect occurs
only for the strategies that have already yielded costs for the Euclidean distance cost function. If
the maneuver TTC2.5 is considered, which represents an overtaking maneuver of the first vehicle,
it can be interpreted from the results that vehicle 1 is closer to vehicle 2 in this overtaking maneuver
than in the cost function TTC, whose distance does not correspond to the worst case, due to
the higher costs. The explained effects for the second scenario of the optimized cost function
Euclidean distance also occur in the other two scenarios and can therefore be interpreted in the
same way. The simulation results for scenario 1 and scenario 3 can be seen in Table B.10 and
Table B.12in Appendix B.4.

7.5. Simulation for optimized cost function obstacle

distance

For the optimized cost function obstacle distance, the same conditions and assumptions apply as
for the cost function obstacle distance from Chapter 6.1.5. Thus, this cost function also incurs
costs for the respective vehicle if the shortest distance dobs, s to the obstacle falls below the safety
distance dobs, sa f e.

For the first scenario, it can be deduced from Table B.13 that by optimizing the cost function,
the safety distance dobs, sa f e from the shortest distance to the obstacle dobs, s is undercut already
at an earlier time t in the defined time horizon. Also with respect to the strategy of the steering
angle acceleration ωu it is noticeable that, for example, in the comparison of maneuver OBS1.4 and
maneuver OBSopt1.4 with the optimized cost function, already for lower strategies of the steering
angle acceleration ωu costs arise for the respective vehicle, which falls below the safety distance to
the obstacle dobs, sa f e. The situation is similar for the cost considering the strategy of acceleration
au. Again, the shortest distance dobs, s due to the optimization of the cost function in the worst case
is smaller than in the simulation results of the cost function obstacle distance from Chapter 6.1.5.
However, these differences from the cost function obstacle distance are so small that they are not
visually apparent, which is why we do not present a visual representation of the trajectories of the
cost function in the comparison.
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The effects explained for the first scenario of the optimized cost function obstacle distance also
occur in the other two scenarios and can therefore be interpreted in the same way. The simulation
results for scenario 2 and scenario 3 can be seen in Table B.14 and Table B.14in Appendix B.5.

7.6. Simulation for optimized cost function quadratic

velocity

The limit speed tolerance vT already explained in Chapter 5.4.1 and used in Chapter 7.6 is also
defined for the optimization with 1 m/s, so that costs are only incurred for the respective vehicle
if the deviation of the speed of the respective vehicle from the limit speed is greater than the limit
speed tolerance range. With a defined speed limit vL of 27.7778 m/s, only costs for speeds outside
the tolerance range of 26.7778 m/s to 28.7778 m/s are calculated for the respective vehicle. As
explained in chapter 5.4.1, the factor Kvel was introduced for a low speed outside the defined
tolerance range to be able to weight the costs Jvel, i for a low speed lower. In the context of the
simulation, this factor Kvel is defined as 0.1, so that the impact of the differences can be clearly
identified and evaluated from the results.

Table 7.2.: Extract from the simulation results of the first scenario for the cost function quadratic
velocity from Table B.16 in Appendix B.6

The simulation results of the cost function quadratic velocity and the optimized cost function
quadratic velocity show only small differences in the second decimal place (cf. VQ1.8 and VQopt1.8).
Only higher deviations of the velocity of the vehicle from the defined speed limit vL result in higher
costs. This is the case both for lowering a lower speed (cf. VQopt1.12, VQopt2.5, VQopt3.5
vehicle 2) than the speed limit and for increasing a higher speed (cf. VQopt1.11, VQopt2.4,
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VQopt3.4 vehicle 1) than the speed limit. Furthermore, all other effects, which result in the
simulation of the cost function quadratic velocity in Chapter 7.6, can also be adopted for the
optimized cost function of quadratic velocity. The higher costs were to be expected due to the
consideration of the worst case and thus in this case of the maximum possible velocity.

7.7. Simulation for optimized cost function steering

angle

As with the simulation of the cost function steering angle in Chapter 6.1.7, individual simulation
results can be expected for the simulation of the optimized cost function steering angle, which
was defined in Chapter 5.5.6, both when changing the strategy of the steering angular velocity ωu

and when changing the strategy of the acceleration au. In the following Table 7.3 with simulation
results of the optimized cost function steering angle for the first scenario, it becomes clear when
comparing the results for the maneuver STopt1.1 that, as with the cost function steering angle
in Chapter 6.1.7, a strategy without steering angle velocity ωu results in costs for the respective
vehicles. The reason for this is the consideration of uncertainties in the strategy and initial state
for the steering angle as defined in Chapter 5.1. Since the two vehicles drive at different speeds,
different results are obtained due to the dependence of the cost function steering angle on the speed
according to Formula 5.37. The higher the speed of the vehicle, the higher the cost of the respective
vehicle.

Taking into account the strategy with acceleration au, it becomes clear, among other things, in
Maneuver STopt1.2 in Table 7.3 that the acceleration has an effect on the costs of the cost function
steering angle and thus the same effects occur as for the cost function steering angle in Chapter
6.1.7. This can also be justified with the fact that the constant acceleration contributes to the fact
that the speed of the vehicles increases. Due to the speed dependency of the cost function according
to Formula 5.37, the costs for the respective vehicle increase under consideration of the strategy
of acceleration. Considering a strategy regarding the steering angle acceleration ωu, comparing
the maneuvers STopt1.3 to STopt1.10 with the maneuvers ST1.3 to ST1.10 of the cost function
steering angle, it is noticed that the simulation results of the optimized cost function do not reflect
the expected higher costs of the worst case, although the worst case of the highest possible steering
angle and the worst case of the highest possible velocity should cause higher costs according to
Chapter 5.5.6.

The explained effects for the first scenario of the optimized cost function steering angle also
occur in the other two scenarios and can therefore be interpreted in the same way. The simulation
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Table 7.3.: Simulation results of the first scenario for the optimized cost function steering angle

results for scenario 2 and scenario 3 can be seen in Table B.20 and Table B.21in Appendix B.7.

7.8. Simulation for optimized cost function acceleration

work

The simulation of the optimized cost function acceleration work from Chapter 5.5.6 generates the
same results as the simulation of the cost function acceleration from Chapter 6.1.8. The reason for
the same results lies in the formula 5.46, which for the reason of explanation is also presented in
formula 7.1 is shown.

Jacc, i =
1
2
·mi ·∆v2

i (7.1)

The Formula 7.1 shows that if the factor of the mass of the respective vehicle mi and/or the
factor of the speed difference ∆vi changes, the cost of the acceleration work Jacc, i for the respective
vehicle i changes. The mass remains identical due to the comparability of the defined scenarios and
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vehicle. The velocity change ∆vi of a vehicle i is calculated from the amount of difference between
the defined velocity in initial state vi and the velocity at the end of the time horizon thorizon vendi.
The velocity vendi at the end of the time horizon thorizon is calculated by the following Formula
7.2:

vend, i = av1 · thorizon + vi (7.2)

Therefore, provided that the defined speed is changed in the initial state, as in the case of
optimization and consideration of the highest possible speed, the results (see tables in Appendix
B.8) show no changes in the cost Jacc, i compared to the cost of the non-optimized speed in the
Tables in Appendix A.8.
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8. Conclusion and further work

To create a normal form game, discrete control functions have been used in this work instead
of continuous control functions as generally used in differential games by Zanardi et al. (2021c)
and Mylvaganam et al. (2017). For the different discrete control variables of the discrete control
functions, reachability analysis has been used to define the different reachable states of the player.
In addition, the discrete control functions allowed games to be considered and solved in a normal
way, rather than the complex and time-consuming solution process of differential games. Based
on the defined reachable states, the cost for each player could be estimated. Here, the reachability
analysis also made it possible to take into account the uncertainty in the initial state and in the
strategy of the players. In order to determine the costs for each player, two groups of cost functions
have been defined in this work, one group containing cost functions to prevent collisions and
the other group containing running costs that take into account the speed and comfort of the
occupant. These defined cost functions have been simulated and evaluated using three defined
driving scenarios from Chapter 5.2, which include different driving maneuvers. The simulation
results in this thesis have shown that the defined cost functions are useful cost functions that can
be used in games with two players to avoid collisions. The cost function Time-To-Collision (TTC)
in Chapter 5.3.2 determines the time remaining until the players can potentially collide. The cost
function center lane offset from Chapter 5.3.3 calculates costs based on the distance of the vehicle
from the center of the lane of the defined vehicle. The Euclidean distance cost function, which
was defined in Chapter 5.3.4, determines the shortest distance between two vehicles that are in
the same lane and traveling in the same direction, thus addressing possible rear-end collisions.
Another distance cost function is the cost function obstacle distance from Chapter 5.3.5, which is
based on the shortest distance between the respective vehicle and an obstacle.

In addition to these cost functions, other defined cost functions have proven to be useful, which
have no direct influence on the avoidance of collisions, but had to be taken into account for safety-
related reasons. These cost functions include the cost function quadratic velocity in Chapter 5.4.1
which has to be taken into account due to speed limits imposed by legal regulations. The other two
cost functions of the steering angle change in Chapter 5.4.2 and the acceleration work in Chapter
5.4.3 were defined for reasons of comfort for the occupant.
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A cost function that did not give the expected results in the context of this thesis is the cost
function collision energy in Chapter 5.3.1. Since only points are considered as states of the vehicle
in the context of this thesis, a collision between the two vehicles only occurs when the states exactly
overlap. This is unlikely due to the different parameters, complexity and defined uncertainties and
is therefore reflected in the simulation results for the cost function collision energy. Beyond the
definition and simulation of the cost functions, this paper also contains a proposal of possible
combinations of these defined cost functions that can be considered in further work. With respect
to the obstacle distance cost function, but also with respect to the other cost functions, further
work can determine the calculation of costs in terms of cost function combinations. In particular,
in the case of the first and third scenarios according to Chapter 5.2, combinations between cost
functions such as TTC or Euclidean distance with the obstacle distance cost function are interesting
to evaluate whether it is more expensive to collide with the vehicle or the obstacle, or whether there
is a strategy for both vehicles to avoid colliding with both the obstacle and the other vehicle. This
would also require a specification of the weighting of the cost function.

Furthermore, in the present work, the worst cases for each pair of controls included in the
reachable states were estimated according to Chapter 4.5. Depending on the cost function, the
cost functions were either maximized or minimized. As part of the nonlinear optimization of the
cost functions, optimization functions were defined in which the respective cost functions were
adjusted with respect to the worst cases. The simulation results of these optimized cost functions
generally showed the higher costs expected when taking the worst cases into account. Individual
deviations that arose in the simulation can be attributed to the uncertainties taken into account. In
addition, for the cost functions that take the shortest distance into account, the shortest distance
was considered as a minimum and the speed was considered as a maximum in the calculation of
the costs due to the speed dependency, as a result of which some cost functions did not deliver
simulation results that could be interpreted in a comprehensible manner.

A concrete comparison between the results of the present work and the work of the Zanardi
et al. (2021c) and Mylvaganam et al. (2017) is not readily possible because different approaches
are taken, as explained in Chapter 1 and in the state of the art in Chapter 3.

In further work, the defined scenarios could be extended with respect to other layers according to
DLR (2019) and Schuldt (2017), for example, weather conditions and the resulting larger distances
between vehicles could be added. In addition, the cost functions could also be supplemented
and concreted. Ozbay (2008) proposes, among other things, an approach to identify possible
appropriate situations that cannot be captured by the general calculation of TTC from Chapter
5.3.2, but which may nevertheless have potential conflicts. This approach includes, but is not
limited to, those based on equations of motion and the assumption of constant acceleration. Whether
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a conflict would occur is based on consideration of the trajectory parameters of preceding and
following vehicles, including relative distance, relative speed, and relative acceleration.

For the purposes of this work, only static form games are considered. Further work can consider
extensive form games explained in Chapter 2.1.2. In these, players would then not even change
or maintain their strategies for the entire time horizon thorizon, but at any point within that horizon
based on the strategies of the other players.

Of interest for further work are uncertainties in the state of the obstacle with respect to the cost
function obstacle distance, as they have already been considered for the vehicles and strategies in
this work. Thus also probability predictions at which exact point the obstacle is located can be
integrated into the cost function. Furthermore, it would also be interesting if not only static objects
are considered, but also dynamic objects that do not represent a vehicle. Examples for this would
be other road users like pedestrians, cyclists or even animals, which can be on the roadway. The
dynamics of these obstacles can also be described by differential equations.
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