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Summary 

 

Predictive maintenance has become increasingly crucial in the context of Industry 4.0. 

This maintenance approach aims to identify machine malfunctions before they occur, 

employing diverse methods to anticipate issues, or to determine optimal conditions for 

swift operational restoration as soon as possible. 

 

In the theoretical background section of the master's thesis, various fundamental 

concepts are explored, including Industry 4.0, Cyber-physical Systems, Cloud 

Manufacturing, Big Data, IoT (Internet of Things), Reliability Engineering in Industry 4.0, 

Predictive Maintenance, Condition-Based Monitoring, and methodologies for developing 

data-driven predictive maintenance models. These methodologies encompass Decision 

Trees, Linear Discriminant Analysis, Logistic Regression, K-Nearest Neighbors, Support 

Vector Machines, Artificial Neural Networks, and Deep Neural Networks. 

 

In the analysis section of the thesis, a dataset containing sensor data with various 

parameters is scrutinized utilizing the R programming language to evaluate and compare 

different predictive maintenance methods. The primary focus of the implementation 

within the programming environment revolves around classifying the operational state of 

the machine. To achieve this classification, several statistical methods and machine 

learning algorithms are employed, including Logistic Regression, Linear Discriminant 

Analysis, Decision Trees, Random Forests, Support Vector Machines, and Consensus 

functions such as Minimum, Maximum, and Mean values. 

 

After interpreting all the results, it is evident that the most appropriate algorithm for this 

dataset is Random Forest, followed by the Maximum of algorithm and Decision Tree 

algorithms. Conversely, the three algorithms exhibiting the poorest results are Minimum 

of Algorithm, LR, and LDA. 

 

These outcomes suggest that the dataset comprises nonlinear data, as evidenced by the 

superior performance of Random Forest and other nonlinear algorithms. Additionally, it 

appears that the function values derived through the consensus ensemble method do 

not exert a significant impact on the overall result.
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1 Introduction 

 

Industry 4.0 is transforming manufacturing and production processes through the 

integration of digital technology. An important aspect of this revolution is the use of 

sensors in predictive maintenance, an approach that significantly improves the 

efficiency and sustainability of industries. By collecting data through sensors, 

companies can monitor the condition of equipment in real time and predict when 

maintenance needs to be performed. The shift from traditional, scheduled maintenance 

to a predictive approach minimizes downtime and reduces the costs associated with 

unplanned equipment failures. 

 

The data collected by sensors is not only enormous but also highly diverse, covering 

parameters such as temperature, vibration, and acoustics [1]. By analyzing this data 

with advanced algorithms and machine learning techniques, companies can identify 

patterns and anomalies that precede equipment failures. This predictive capability 

enables timely intervention, ensuring that maintenance is carried out only, when 

necessary, thus optimizing resource utilization. 

 

Moreover, predictive maintenance in Industry 4.0 facilitates a deeper understanding of 

machine performance and lifecycle. It enables companies to make more informed 

decisions about equipment management and investments. The efficiency gains from 

predictive maintenance contribute significantly to reducing operational costs and 

improving the overall competitiveness of businesses in a rapidly evolving technological 

landscape. 

 

In summary, the role of Industry 4.0 in enhancing predictive maintenance through the 

use of sensors is a critical component in the modernization of industries. It not only 

increases operational efficiency but also drives innovation, paving the way for smarter, 

more sustainable industrial practices. 
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1.1 Problem Statement 

 

The biggest challenge lies in determining the optimal conditions and timing for machine 

maintenance, which cannot yet be automatically ascertained. Different statistical and 

machine learning methods are compared using sensor data and various parameters in 

a heuristic approach to optimize the situation. Sometimes, more than one method is 

used on the same dataset but with different data ranges to optimize the result. 

 

In addition, the volume and variety of data generated in Industry 4.0 environments pose 

challenges in data collection, processing, and analysis. Machine learning algorithms 

require high-quality data for accurate predictions, making data management critical. 

 

These challenges require careful planning, resource allocation, and ongoing 

management to ensure successful implementation and operation. 

 

1.2 Objectives 

 

The aim of this master's thesis is to compare data within a dataset using various 

statistical and machine learning methods.  

 

The focus is to analyze failures in a dataset where machines are constantly breaking 

down. The objective is to reduce the current failure rates by considering different 

predictive maintenance methods. It will also determine which methods can more 

effectively classify the machines’ health through maintenance strategies, Reliability 

Engineering, and Industry 4.0 practices. 

 

1.3 Structure of Thesis 

 

This master's thesis is organized into five main sections: 

 

Firstly, the Introduction provides a brief description of the problem that prompted the 

writing of this thesis, outlines its objectives, and explains how the problem will be 

addressed. 
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The second chapter, titled 'Theoretical Background,' delves into concepts crucial to 

Industry 4.0, such as Cyber-physical Systems, Big Data, the Internet of Things (IoT), 

and Sensors. This chapter will also provide a detailed exploration of reliability 

technologies within the context of Industry 4.0. 

 

In the third chapter, titled 'Maintenance Strategies,' topics crucial to Industry 4.0, such 

as predictive maintenance and condition monitoring, are discussed. Additionally, this 

chapter describes various models for improved failure prediction in predictive 

maintenance, categorizing them under two separate headings: statistical methods and 

machine learning methods. These models are not only described, but the chapter also 

provides a forecast of their potential applications, which will be further explored in the 

subsequent chapter. 

 

The next to the last section is the 'Application Example' section. It begins with a brief 

introduction to R, a statistical analysis program that will be used for data analysis and 

comparison. Then, prior to the actual data analysis, the source of the data to be used 

will be identified, and the dataset will be reviewed and prepared for enhanced analysis. 

Subsequently, data analysis will be conducted using different statistical and machine 

learning methods. These analyses will be visualized, and all results will be evaluated, 

compared, and interpreted. 

 

Finally, the study's results are discussed, highlighting the achievements and outcomes. 
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2 Theoretical Background 

2.1 Industry 4.0 

 

The idea of the industrial revolution has been fundamental in shaping our 

comprehension of the economic, political, and social transformations that have 

occurred over the last two hundred years [2].  

 

The first Industrial Revolution started in the 18th century, marked by a shift to novel 

production techniques in Europe, the United States, and globally. This shift 

encompassed a move from manual production to mechanization, advancements in 

chemical manufacturing and iron production, a greater reliance on steam and 

waterpower, the creation of machine tools, and the emergence of an automated factory 

system [4]. 

 

The Second Industrial Revolution, following its predecessor, started in the early 19th 

century. This period witnessed significant advancements in technology, particularly in 

steel, chemicals, and electricity, among other areas. A key breakthrough was the 

invention of electricity, which enabled numerous industries to grow and flourish. This 

progress also facilitated mineral exploration. A defining feature of the 2IR was the 

widespread adoption of machinery, predominantly driven by electrical power [5]. 

 

The Third Industrial Revolution, also known as the Automation Revolution, began 

shortly after World War II, around the 1950s. It was characterized by the introduction of 

partially automated processes using memory-programmable controls and computers. 

With these technologies, it became possible to fully automate production processes 

without human intervention. This era was marked by the emergence of semiconductors, 

mainframe computers, personal computing, and the Internet, leading to a significant 

technological shift [4]. 

 

Industry 4.0, also known as the Digitization Revolution, was initially introduced in 2011 

in Germany as a proposal for shaping a new approach to the nation's economic policy, 

focusing on advanced technological strategies. This industrial revolution is 

distinguished by the integration of information and communication technologies, 
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primarily in the industrial sector, but also extending to various other societal activities 

[4]. 

 

Figure 1 provides a more detailed description of the 4 industrial revolutions briefly 

described above. 

 

 

 

Figure 1 – The core aspects and principal elements of the first three and the Fourth Industrial 

Revolution [3, p. 24] 

 

 

Production systems equipped with digital computer technology are further enhanced 

with network connectivity and have a digital twin on the Internet. This interconnection 

of all systems gives rise to "cyber-physical production systems," resulting in smart 

factories where production systems, components, and individuals interact through a 

network, allowing for almost autonomous production [5]. 
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The framework of production and manufacturing systems is undergoing a 

transformation, characterized by the growing use of smart devices and robotics, the 

Internet of Things (IoT), and advanced data analytics, all of which are enhancing 

manufacturing intelligence. The convergence of these elements in Industry 4.0 holds 

the promise of remarkable progress in factory settings. For instance, sensors capable 

of predicting failures can independently initiate maintenance procedures [4]. 

 

 

2.1.1 Cyber-physical Systems 

 

A Cyber-Physical System (CPS) effectively combines cyber and physical aspects, 

utilizing advanced sensor, computing, and networking technologies. The widespread 

acceptance of Cyber-Physical Systems (CPS) is linked to the idea of "Industry 4.0," 

which revolves around the integration of technologies and knowledge to achieve 

autonomy, reliability, systematic operation, and control without human involvement. 

Fundamental technological trends that underpin CPS encompass the Internet of Things 

(IoT), Big Data, smart technologies, cloud computing, and more. Figure 2 shows the 

various areas where Cyber-Physical Systems (CPSs) serve as the foundation for 

development [6]. 

 

 

Figure 2 – Cyber-physical systems [6, p. 213] 
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Key Characteristics of Cyber-Physical Systems (CPSs) according to [7] and [8]: 

 

• Integration of embedded and mobile sensors 

• Utilization of sensor data from various domains 

• Interaction between cyber and physical elements 

• Capability for training and adaptation 

• Interconnectivity via the Internet, exemplified by IoT 

• Reliable functioning of centralized, automatically controlled systems, such as 

ATMs and POS systems 

• Existence of a unified cyber realm facilitating both internal system exchanges 

and external interactions, along with information security measures like 

encryption, firewalls, antivirus software, etc. 

• Requirement for dependable operation, with certification in certain cases 

• System robustness achieved through automated intelligent control 

• Human interaction, either directly internal or external to the system 

 

2.1.2 Cloud Manufacturing 

 

Cloud manufacturing is being recognized as both a new manufacturing paradigm and 

an integrated technology, showing great potential in evolving current manufacturing 

practices into future-oriented, service-centric, highly collaborative, and innovative 

processes. This approach integrates newly developed technologies like the Internet of 

Things (IoT), Cloud Computing, the Semantic Web, service-oriented technologies, 

virtualization, and advanced high-performance computing, along with progressive 

manufacturing models and information technologies [9]. 

 

Generally, cloud manufacturing is a system designed to offer both digital and physical 

manufacturing services, optimizing the use of manufacturing resources. 

Fundamentally, it needs to connect with actual manufacturing equipment to establish a 

Cyber-Physical System (CPS). In this context, an integrated CPS specifically for cloud 

manufacturing is outlined, focusing on enhancing remote access and control of factory 

machinery like CNC machines and robots. This is achieved by integrating 3D models, 

sensor data, and camera images in real-time [10]. 
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Figure 3 illustrates the structure of the Cyber-Physical System (CPS), encompassing 

distributed process planning (DPP), real-time process monitoring, dynamic scheduling 

of resources, and remote control of devices. DPP utilizes real-time data on machinery 

and their operational status to facilitate adaptive decision-making in process planning. 

The Cloud-DPP can also dynamically create machining process plans in response to 

changes, enabled by informed decision-making [11]. This process involves connecting 

sensors embedded or attached to each machine with a manufacturing cloud in the 

cyber workspace. Subsequently, process plans are transmitted as function blocks to 

the machine controllers on the physical shop floor for implementation. Also, the Cloud-

DPP service gathers information from the monitoring service, including details like 

machine tool ID, its current status, and available time slots, as well as the feature list of 

a new part that is to be machined [7]. 

 

 

 

Figure 3 – Cloud-DPP in a cyber-physical system [7, p. 46] 

 

2.1.3 Big Data 

 

As Industry 4.0 and Big Data evolve, there will be a surge in both structured and 

unstructured data from various stages of the process. Historically, databases for 
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process and product quality have been merged to create predictive models for process 

monitoring, control, and optimization. Tools like soft sensors and inferential models are 

typically used in these scenarios. In an interesting way, though, one crucial database 

has often been neglected by many focused-on process developments: the maintenance 

department database. This database gathers information on faults from all plant 

equipment, leading to the plausible theory that equipment failure patterns could be 

linked to their service conditions. By integrating process and maintenance data, vital 

insights can be gained on how operational conditions impact system reliability. This 

integration can provide valuable contributions to process refinement and add a 

predictive aspect to managing operational risks [13]. 

 

Data undoubtedly holds and will maintain a progressively crucial role in both current 

and future industries, given the consistent growth in the volume and variety of industrial 

data. The primary sources of industrial big data include: 

▪ Data related to design, encompassing information from product and machinery 

design. 

▪ Data regarding machine operation, including insights from control systems and 

equipment functioning. 

▪ Data on staff activities, like manual operation record and videos of staff work 

processes. 

▪ Information related to costs, including manufacturing and operational expenses. 

▪ Data pertaining to logistics. 

▪ Data about environmental conditions, including weather, indoor temperature, 

humidity, and noise levels. 

▪ Data for fault detection and monitoring system status. 

▪ Data on product quality, like the defect rates of different facilities. 

▪ Data on product usage, including availability and repair frequencies. 

▪ Customer-related information, such as customer details, feedback, and 

suggestions [12]. 

 

2.1.4 Internet of Things (IoT) 

 

IoT is utilized across different sectors such as automotive, healthcare, manufacturing, 

residential, and advanced electronics, enhancing the intelligence of products, services, 

and processes. This technology has grown out of the rapid development of wireless 
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technologies, sensors, and the internet. IoT links networked systems and various 

devices via the internet, making these systems environmentally responsive and 

insightful through sensors, enabling them to transmit vast quantities of data daily. These 

interconnected systems are user-friendly and communicate seamlessly through the 

internet [14]. 

 

Industry 4.0 allows for the merging of physical assets into a seamless blend of digital 

and physical operations, leading to the development of smart factories and intelligent 

manufacturing settings. The Internet of Things (IoT) is a rapidly expanding technology 

playing a significant role in the advent of Industry 4.0. IoT aims to infiltrate our daily 

surroundings and objects, bridging the gap between the physical and digital realms. It 

facilitates constant connectivity of people and objects, regardless of location, using 

various networks and services. This connectivity ideally happens anytime, with 

anything, and with anyone [15]. 

 

2.1.5 Sensors 

 

A sensor functions as a unit that perceives and reacts to various forms of input from the 

physical environment. This input might include elements such as light, temperature, 

movement, humidity, or pressure, among other aspects of the environment. Typically, 

the sensor's output is a signal that is transformed into a format understandable by 

humans, either displayed directly at the sensor's site or sent digitally across a network 

for monitoring or additional analysis [16]. 

 

Sensors are crucial in the realm of the Internet of Things (IoT), enabling the creation of 

systems that gather and process information about particular environments. This 

facilitates more straightforward and efficient monitoring, management, and control. IoT 

sensors find applications in various settings, including homes, outdoor areas, 

automobiles, airplanes, industrial environments, and more. They serve as a link 

between the physical and digital realms, functioning as the perceptive organs for a 

computing system that interprets and responds to the data acquired from these sensors 

[16]. 

 

Figure 4 illustrates the diverse abilities and potentials of sensors within the Industry 4.0 

framework. It delves into the standard characteristics of these sensors, including 
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predictive maintenance, building automation, monitoring or conditioning of assets, and 

the comprehensive automation of processes, all tailored for the Industry 4.0 

environment. Furthermore, it discloses subcategories of these capabilities, such as 

monitoring trends, offering efficient services, supporting cloud technologies, ensuring 

precision and miniaturization, optimizing processes, and reducing or eliminating 

downtime. These aspects further underscore and validate the proficiency of sensors in 

the specialized sector of Industry 4.0 [17]. 

 

 

Figure 4 – Several capabilities of sensors for industry 4.0 domain [17, p. 5] 

 

2.2 Reliability Engineering in Industry 4.0 

 

Reliability stands as the best quantitative assessment of the design of products, 

components, or systems, representing the quality exhibited by parts, elements, or 

systems over time as they function without encountering failures in a particular 

environment within a defined duration [19]. 

 

Reliability engineering constitutes an engineering field that employs scientific principles 

to guarantee the optimal performance of a component, product, facility, or procedure, 

ensuring uninterrupted function within a specified environment for the necessary 
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duration without encountering failures. It prioritizes trustworthiness throughout a 

product's lifecycle, defined as the capability of a system or component to operate under 

specified conditions for a predetermined timeframe. Put differently, reliability 

encompasses two crucial aspects: time and stress [20]. 

 

Reliability has not only spurred research aimed at emphasizing its significance to 

decision-makers but has also been a key motivator. Owing to the surge in 

computational capabilities and the vast data produced through technological progress, 

the topic of reliability has led to investigations where advanced computational models 

are employed to enhance the prediction of equipment failures [18]. 

 

Reliability predicts analysis, evaluates, and enhances various products and device 

systems. Within the context of Industry 4.0, this presents a chance to enhance 

efficiency and bolster productivity across connections, devices, product lines, and data 

transmission. This is due to the fact that reliability methodologies cater to the optimal 

functioning of devices such as hardware, software, and connectivity [19]. 

 

The maintenance strategies linked to reliability must continually evolve to keep pace 

with the technological advancements inherent in products and manufacturing 

equipment. Alongside these technological advancements, maintaining high quality in 

manufacturing is essential for consistently producing reliable products. Proactive 

assurance of product reliability remains a vital, routine aspect of production. In this 

context, Industry 4.0 offers an advantageous environment for the development and 

enhancement of reliability models [18]. 

 

Industry 4.0 introduces a fresh opportunity for visionary thinkers and engineers to 

design novel systems and pioneer smart devices and tools. These innovations not only 

foster infrastructures for industrial progress but also introduce unforeseen failure 

mechanisms, unfamiliar economic, functional, technical, and structural 

interdependencies among system elements, consequently leading to unfamiliar 

hazards and risks. However, amidst the surge in complexity and interdependence, the 

integration of novel concepts and the advancements in knowledge, methodologies, and 

technologies—such as big data, the internet of things, and swift adaptability to 

changes—create new prospects for refining reliability engineering techniques and 

augmenting the capability to predict reliability [21]. 
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3 Maintenance Strategies 

 

Within industry, maintenance stands as a crucial element impacting both the 

operational uptime and efficiency of machines. Hence, it is imperative to promptly 

recognize and rectify machine failures to prevent any interruptions in production [22]. 

 

Because of advancements in machine learning methods and sensor technology, the 

favored approach for enhancing machine and process maintenance in industrial 

settings nowadays revolves around a data-centric viewpoint [24]. 

 

Efficient utilization of existing resources and the avoidance of unnecessary expenses 

are essential within maintenance strategies. These measures are crucial to maintaining 

overall system efficiency and keeping maintenance costs minimized [25]. Figure 5 

provides a comprehensive summary of various maintenance strategies. 

 

 

 

 

Figure 5– Different maintenance strategies [23, p. 3] 
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The most important Maintenance strategies are briefly explained below: 

 

• Corrective Maintenance: As per the EN 13306 standard, corrective 

maintenance refers to maintenance conducted subsequent to identifying a fault, 

aiming to restore an item to a condition where it can fulfill its necessary function 

[26]. 

 

• Preventive Maintenance: According to the EN 13306 standard, preventive 

maintenance is described as maintenance performed at scheduled intervals or 

based on specified criteria, aiming to minimize the likelihood of failure or the 

decline in the functionality of an item. Hence, preventive maintenance 

encompasses a series of steps taken proactively to forestall failures or the 

deterioration of a machine. Time-based maintenance, within this context, is 

identified as the preventive maintenance method advising the execution of all 

maintenance tasks either after a specific number of operational hours or based 

on predetermined schedules, without regard to the item's current health 

condition [26]. 

 

• Predictive Maintenance: As outlined in the EN 13306 standard, predictive 

maintenance involves condition-based upkeep conducted after a forecast 

generated from repetitive analysis or recognized attributes, evaluating crucial 

parameters related to the item's degradation. It employs diverse methods and 

machine learning techniques to examine both recent and past data, developing 

predictive models aimed at making precise projections regarding the 

forthcoming condition of a machine or equipment [26]. 

 

• Condition-based Maintenance: The EN 13306 standard defines condition-

based maintenance as a form of preventive maintenance that incorporates a 

blend of condition monitoring, inspections, testing, analysis, and subsequent 

maintenance actions. Its primary objective is to forecast a maintenance task 

based on evidence of degradation and deviations from an expected normal 

behavior of an asset. Multiple sensors are employed to monitor equipment, 

capturing pertinent data regarding its operational lifespan. Furthermore, 

contextual factors such as temperature, humidity, etc., also contribute crucial 

information. Typically, Key Process Indicators (KPIs) or health indicators are 
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computed and assessed to identify patterns indicating abnormal situations and 

potential failure occurrences [26]. 

 

 

• Prescriptive Maintenance: In terminology, the maintenance standards EN 

13306 and DIN EN 31051 do not explicitly reference it. However, its operational 

aspects can be inferred, representing a suggestion for specific actions derived 

from models related to corrective and predictive maintenance outcomes. The 

primary obstacle in implementing prescriptive maintenance lies in the practical 

complexity of constructing operational models. Current research models rely on 

a makeshift approach to model development, combining machine learning 

methods and data fusion techniques with fuzzy reasoning, simulation methods, 

and evolutionary algorithms [26]. 

 

The most effective maintenance strategy aims to enhance equipment health, lower 

failure rates, and cut maintenance expenses while extending equipment longevity. That's 

why predictive maintenance stands out as the foremost strategy among others, 

especially in the era of Industry 4.0. This approach is gaining significant traction due to 

its ability to predict and prevent issues, utilizing advanced technologies and data analysis 

to streamline maintenance processes and optimize equipment lifespan [22]. 

 

3.1 Predictive Maintenance 

 

Predictive Maintenance (PdM) relies on predictive mechanisms to ascertain the timing 

of necessary maintenance actions. This method involves ongoing monitoring of machine 

or process integrity, enabling maintenance to be executed solely when deemed 

necessary. Additionally, it facilitates early detection of failures through predictive tools 

leveraging historical data (such as machine learning techniques), integrity indicators 

(such as visual cues, wear, color variations differing from the original, among others), 

statistical inference techniques, and engineering methodologies [27]. Within the realm of 

the Internet of Things (IoT) and Industry 4.0, there's a growing potential to merge 

predictive maintenance with other systems within the production process. This 

integration offers expanded possibilities to interconnect predictive maintenance with 

various facets of production systems [22]. 
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The comprehensive framework for predictive maintenance comprises 10 categories. 

Figure 6 displays these 10 categories, representing the topmost level of this framework 

[27]. 

 

 

 

Figure 6– Categories of the Framework for Predictive Maintenance [27, p. 5] 

 

Predictive maintenance offers several benefits. Firstly, it diminishes the need for 

unnecessary maintenance tasks that adhere to fixed periodic intervals, potentially 

decreasing the total number of maintenance activities throughout a machine's lifespan. 

Secondly, it not only helps avoid premature maintenance but also averts late 

maintenance actions, as equipment failures might occur before the scheduled periodic 

maintenance interval. This is because these intervals are typically based on average 

lifespans that might encompass significant deviations from the norm, such as specific 

structural features within machinery components. Both the reduction in unnecessary 

maintenance and the prevention of critical breakdowns lead to enhanced productivity 

and reduced production downtime. Consequently, depending on the accuracy of the 

predictive method employed, predictive maintenance can be viewed as an overall 

enhancement in efficiency compared to traditional maintenance approaches [22]. 
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3.2 Condition-Based Monitoring 

 

The aim of condition-based maintenance is to conduct repairs or replacements 

proactively, preventing part failures to minimize breakdowns and ensuring that 

maintenance occurs only when required. This approach seeks to strike a balance 

between inspection expenses and the costs resulting from failures. In opposition to 

conventional maintenance practices reliant on system age or breakdown occurrences, 

traditional preventive maintenance relies on routine time-based inspections and 

maintenance activities determined through the analysis of failure time data obtained 

from a series of degradation experiments. Conversely, condition-based maintenance 

utilizes measurements of a degradation variable gathered during product use to 

schedule maintenance tasks [28]. 

 

Condition monitoring technology is categorized into two main types: offline monitoring 

and online monitoring. Offline monitoring involves periodic assessments conducted at 

specific intervals using machine sensor data. These analyses are performed in a 

separate laboratory setting, away from the machine itself. On the other hand, online 

condition monitoring involves sensors within the machine continually gathering data, 

which is then compared to predefined acceptable values in real-time. In recent times, 

online condition monitoring has gained significant traction, primarily attributed to the 

advancements in Internet of Things (IoT) solutions [30]. 

 

A crucial aspect of successful condition-based maintenance (CM) lies in its ability to 

pinpoint potential failure indicators, serving as the foundation for conducting reliability 

analysis, estimating lifespan, and predicting the remaining useful life (RUL) [29]. 

 

3.3 Methods for data-driven predictive maintenance models 

 

In the last few years, industrial wireless sensor networks and industrial cyber-physical 

systems have emerged as crucial technologies for gathering data in intricate industrial 

settings. These systems enable the collection of mechanical data through diverse, highly 

reliable sensors in real-time. Clearly, due to the ongoing enhancements in data collection 

capabilities and the exponential surge in data volume, data-driven approaches for 

monitoring health have made significant strides. This progress has garnered 
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considerable attention, particularly concerning predictive maintenance for industrial 

equipment [31]. 

 

Due to the significant resurgence of artificial intelligence, data-driven methods for 

predictive maintenance (PdM) have emerged as the most efficient way for tackling smart 

manufacturing and vast industrial data. This is particularly true when it comes to tasks 

like health assessment, such as fault diagnosis and estimating remaining life [31]. 

 

The predictive maintenance (PdM) techniques are primarily categorized into three 

groups: Prognosis based on models; knowledge; and driven by data. In particular, a 

thorough investigation into PdM methods for mechanical equipment was conducted, 

focusing on aspects such as data collection, data analysis, and decision-making support. 

An intelligent PdM system driven by data was suggested with the aim of achieving 

flawless manufacturing [31]. 

 

Data-driven models use various methods. These methods are divided into statistical 

methods of predictive Maintenance and machine learning methods of predictive 

Maintenance. These methods are explained in detail below. 

 

3.3.1 Statistical methods of predictive Maintenance 

 

Statistical modeling involves the complex process of creating sample data and making 

predictions about the real world by employing various statistical models and specific 

assumptions. Within this procedure, there is a mathematical connection established 

between variables that exhibit randomness and those that do not [32].  

 

Typical data sources used for statistical analysis encompass a variety of sources such 

as Internet of Things (IoT) sensors, census records, public health statistics, social media 

information, imagery datasets, and other data from the public sector. These diverse 

datasets are particularly advantageous for generating real-world predictions [33]. 

 

The following significant classification methods such as Decision Tree, Linear 

Discriminant Analysis, Logistic Regression and K-Nearest Neighbors are being 

reviewed. 
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3.3.1.1 Decision Tree 

 

A decision tree is a non-parametric supervised learning technique employed for tasks 

involving both classification and regression. Its structure is hierarchical, resembling a 

tree, comprising a root node, branches, internal nodes, and leaf nodes [34]. 

 

Decision tree classifiers are recognized as one of the most popular methods for 

representing classifiers in data classification. Researchers from diverse fields and 

backgrounds have explored the challenge of expanding decision trees using existing 

data, including machine learning, pattern recognition, and statistics. Decision tree 

classifiers have been suggested for application in numerous domains, including medical 

disease analysis, text classification, user smartphone classification, image analysis, and 

various other fields, showcasing their versatility and potential usefulness in different 

contexts [35]. 

 

The process of the decision tree is illustrated in Figure 7. 

 

 

Figure 7– The process of the decision tree [34] 
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3.3.1.2 Linear Discriminant Analysis 

 

Linear Discriminant Analysis (LDA) is a supervised machine learning method employed 

for solving multi-class classification problems and is widely utilized in data classification 

and reducing dimensions. It adeptly manages scenarios where the frequencies within 

classes differ, and its efficacy has been evaluated using randomly generated test data. 

This technique aims to optimize the ratio between the variance among classes and 

within classes within a dataset, ensuring maximum distinguishability. Its application in 

speech recognition involves employing Linear Discriminant Analysis for solving 

classification issues [39]. 

 

 

Figure 8– An example for classification before and after implementing to LDA [40] 

 

Figure 8 displays the classification of data for both pre- and post-LDA implementation. 

Throughout this process, the following steps were sequentially applied [40]: 

 

• Data Preparation 

• Compute Class Statistics 

• Compute Between-Class and Within-Class Scatter Matrices 

• Compute Eigenvectors and Eigenvalues 

• Select Discriminant Directions 

• Transform Data 

• Classification 
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3.3.1.3 Logistic Regression 

 

Logistic regression models are statistical models that explain the connection between 

a qualitative dependent variable (one that assumes certain discrete values) and an 

independent variable. These models are utilized to analyze the impact of predictor 

variables on categorical outcomes, typically with a binary outcome, making it a binary 

logistic model. If there's only one predictor variable, it's termed a simple logistic 

regression. When there are involved multiple predictors, including categorical and 

continuous variables as predictors, it's termed a multiple or multivariable logistic 

regression [36]. 

 

Figure 9– Example of logistic regression [38, pp.291] 

 

As seen in Figure 9 that the outcome in logistic regression represents a probability, the 

dependent variable is constrained within the range of 0 to 1. To model this, logistic 

regression employs a logit transformation on the odds, which is the ratio of the 

probability of success to the probability of failure [37]. 

  

3.3.1.4 K-Nearest-Neighbour 

 

The K-Nearest Neighbor (KNN) technique is utilized for object classification by 

referencing the closest learning data points concerning the object under consideration, 

comparing them based on past and present data. During the learning phase, KNN 

computes the proximity of the nearest neighbor using the Euclidean distance formula. 
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Alternative methods involve optimizing the distance formula by comparing it with similar 

approaches to achieve superior results [42]. 

 

Figure 10 shows how two different classes are separated on a simple data set with the 

K-Nearest-Neighbor Method. 

 

 

 

Figure 10– K-Nearest-Neighbor Method for a) k= 1 and b) k = 3 on a simple data set with two 

classes shown as circles and triangles. The “?” symbols represent the data points to be 

classified. [41, pp. 101] 

 

In addition to the choice of k, there are a variety of definitions for the distance between 

two data points that are required to determine the closest center point. In the example 

before, the Euclidean (geometric) distance was used, which follows from the sentence 

of the Pythagoras. For d properties (= dimensions) the distance is d (p, q) in Equation 

1 of two points P and Q [41]. 

 

           𝑑(𝑝,𝑞) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑑 − 𝑞𝑑)2          (1) 

 

3.3.2 Machine Learning methods of predictive Maintenance 

 

Predictive maintenance involves forecasting potential malfunctions by leveraging data 

obtained from monitoring equipment and performance measurements of processes. 

Machine learning algorithms are frequently employed to scrutinize this equipment 

monitoring data. Machine learning entails the computer's ability to operate more 

accurately through data collection and analysis. Typically, machine learning algorithms 
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utilize supervised learning, where labeled data is employed to train the algorithm. 

Nevertheless, numerous supervised machine learning algorithms exist, making the 

selection of the optimal one for addressing predictive maintenance challenges a non-

trivial task [43]. 

 

 Within industries, maintaining equipment holds significant importance, directly 

impacting equipment uptime and efficiency. Detecting and resolving equipment faults 

is crucial to prevent disruptions in production processes. Machine Learning (ML) 

methods have emerged as promising tools in Predictive Maintenance (PdM) 

applications, aiming to avert failures in the machinery constituting production lines on 

the factory floor [22]. 

 

The following significant classification methods such as Support Vector Machine, Deep 

Learning, Random Forest and Artificial Neural Network and Deep Neural Network are 

being reviewed. 

 

3.3.2.1 Support Vector Machine 

 

A Support Vector Machine (SVM) represents a supervised learning technique utilized 

in machine learning for addressing classification and regression tasks. SVMs are good 

in resolving binary classification challenges, where the objective involves categorizing 

elements within a dataset into two distinct groups. The fundamental goal of an SVM 

algorithm revolves around identifying the optimal line, referred to as a decision 

boundary, that effectively segregates data points belonging to different classes. In 

higher-dimensional feature spaces, this boundary is termed a hyperplane. The primary 

aim is to maximize the margin, denoting the space between the hyperplane and the 

nearest data points from each category, thereby facilitating clear differentiation between 

data classes. SVMs prove valuable for analyzing intricate data sets that cannot be 

delineated by a simple linear boundary. Nonlinear SVMs achieve this by leveraging a 

mathematical technique, transforming the data into higher dimensions, where 

discerning a boundary becomes more feasible [44]. 

 

In Figure 11, there exists a depiction of two distinct categories, delineated and 

separated by a decision boundary or hyperplane. 
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Figure 11– An example SVM model with two categories for classification [45] 

  

3.3.2.2 Random Forest 

 

Random Forest stands as a well-known machine learning algorithm within the realm of 

supervised learning. This versatile method finds application in addressing both 

Classification and Regression tasks in machine learning. Its foundation lies in ensemble 

learning, a methodology that involves amalgamating multiple classifiers to address 

intricate problems and enhance the model's performance [46]. 

 

The Random Forest classifier, as its name implies, comprises multiple decision trees 

generated on diverse subsets of the provided dataset. It leverages averaging across 

these trees to enhance the predictive accuracy of the dataset. Unlike relying on a single 

decision tree, this method incorporates predictions from each tree and determines the 

final output based on the majority consensus among these predictions. Increasing the 

number of trees in the forest contributes to heightened accuracy and serves as a 

preventive measure against overfitting issues [46]. 
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In Figure 12 provided the working of the Random Forest algorithm: 

 

 

 

Figure 12– Random Forest algorithm [46] 

 

 

3.3.2.3 Artificial Neural Network and Deep Neural Network 

 

Artificial Neural Networks (ANNs), a subset of machine learning, lie at the core of deep 

learning algorithms. Inspired by the human brain, they replicate the signaling process 

among biological neurons. As can be seen in Figure 13, ANNs consist of node layers: 

an input layer, one or more hidden layers, and an output layer. Each artificial neuron 

within these layers connects to others, possessing associated weights and thresholds. 

When the output of a node surpasses the specified threshold, it activates, forwarding 

data to the subsequent network layer; otherwise, no data transmission occurs. ANNs 

have shown competitive utility compared to traditional regression and statistical models 

[47]. 
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Figure 13– Artificial Neural Network [48] 

 

 

A Deep Neural Network (DNN) is an advanced form of a neural network characterized 

by numerous hidden layers. In a DNN, these layers are densely interconnected. DNNs 

excel in extracting adaptable fault features, effectively representing crucial information, 

and conducting intelligent diagnoses. Their capability to enhance detection accuracy is 

notable, and they are highly efficient in reducing errors that stem from manually 

designed features [31]. 

 

 

3.4 Current applications of ML in predictive maintenance 

and reliability engineering 

 

Table 1 provides an overview of the current applications of machine learning (ML) in 

predictive maintenance and reliability engineering. Additionally, the advantages and 

disadvantages of some ML methods to be used in this paper are also stated. 
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Table 1 – The advantages, disadvantages, and applications of ML models in predictive 

maintenance and reliability engineering [49] 

 

ML 

model 

Reported advantage Model disadvantage Application 

DT 1. Excellent accuracy 

with great training 

efficiency 

1.Not robust to data 

noise 

1. Assessing stakeholders 

corporate governance  

2. Dirt and mud detection 

on a wind turbine blade  

3. Forest fire risk 

assessment 

LDA 1.Excellent prediction 

accuracy 

1. Not suitable for 

nonlinear applications 

1. Dirt and mud detection 

on a wind turbine blade 

KNN 1. Excellent accuracy 

and efficiency 

1. Not suitable for high 

dimensional data  

2. Not robust to data 

noise 

1. Risk-based inspection 

screening assessment  

2. Dirt and mud detection 

on a wind turbine blade 

SVM 1. Excellent accuracy 

and efficiency for feature 

extraction  

2. Accurate in detecting 

the early signs of system 

anomalies 

1. Not suitable for 

sparse and high 

dimensional data  

2. Requires prior 

knowledge for kernel 

selection 

1. Real-time Motor 

machine failure 

identification and early fault 

diagnosis  

2. Spacecraft health 

monitoring 

RF 1. Suitable for discrete 

classification 

2. Excellent estimation 

accuracy 

1. More complex than 

DT model  

2. Hard to interpret the 

‘black box’ model 

1. Rank the importance of 

each  

component of an 

engineering system 

DNN 1. Excellent prediction 

accuracy and training 

efficiency  

2. Excellent long- and 

mid-term prediction 

accuracy 

1. Computationally 

expensive  

2. Hard to interpret the 

‘black box’ model 

1. RUL of aircraft engine 

prediction  

2. Human errors prediction  

3. Component reliability 

and degradation level 

prediction 
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4 Application Example 

4.1 Source of data  

 

This paper utilizes a dataset obtained from the open website Kaggle [50], specifically 

designed for the classification of synthetic milling processes. The synthetic predictive 

maintenance dataset was generated due to the challenges in acquiring and publishing 

real predictive maintenance datasets, which are often hard to obtain. The dataset is 

crafted to closely mirror the real predictive maintenance scenarios encountered in the 

industry, aligning with the scope of knowledge and experience [50]. 

 

The dataset encompasses 10,000 data points with 14 columns, each column 

representing the features of a data point. The features align with the specifications 

outlined in references [50]: 

 

• UID: Unique identifier spanning from 1 to 10,000. 

• Product ID: Comprising a letter designation (L for Low, M for Medium, and H for 

High) to represent product quality variants, with low accounting for 50% of all 

products, medium for 30%, and high for 20%. Additionally, each variant is 

associated with a variant-specific serial number. 

• Type: The product type, denoted as L, M, or H, retrieved from column 2. 

• Air temperature [K]: Generated through a random walk process and 

subsequently normalized to a standard deviation of 2 K around 300 K. 

• Process temperature [K]: Generated using a random walk process normalized 

to a standard deviation of 1 K, added to the air temperature plus 10 K. 

• Rotational speed [rpm]: Calculated through a power of 2860 W, with the addition 

of normally distributed noise. 

• Torque [Nm]: Torque values follow a normal distribution centered around 40 

Nm, with a standard deviation of 10 Nm and no negative values. 

• Tool wear [min]: The quality variants High/Medium/Low contribute 5/3/2 minutes 

of tool wear to the utilized tool during the process. 

• Machine failure: Specifies whether the machine has encountered failure in this 

specific data point, indicating the presence of any of the following true failure 

modes. 
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The machine failure consists of five independent failure modes: 

 

• Tool wear failure (TWF): The tool replacement or failure occurs at a randomly 

chosen tool wear time within the range of 200 to 240 minutes (120 instances in 

our dataset). At this specific time interval, the tool has been replaced 69 times, 

and failure has occurred 51 times, randomly assigned. 

• Heat dissipation failure (HDF): Process failure due to heat dissipation occurs 

when the difference between air and process temperature is below 8.6 K, and 

the tool's rotational speed is under 1380 rpm. This condition is met in 115 data 

points. 

• Power failure (PWF): The product of torque and rotational speed (in rad/s) 

corresponds to the required power for the process. If this power falls below 3500 

W or exceeds 9000 W, the process fails. This situation is observed in 95 

instances within our dataset. 

• Overstrain failure (OSF): Process failure occurs due to overstrain if the product 

of tool wear and torque surpasses 11,000 minNm for the Low (12,000 for 

Medium, 13,000 for High) product variants. This condition is met in 98 data 

points. 

• Random failures (RNF): Each process carries a 0.1% probability of failure, 

irrespective of its process parameters. However, this scenario is observed in 

only 5 data points, which is less than expected for a dataset containing 10,000 

data points. 

 

If any of the failure modes is true, the process is considered to fail, and the "Machine 

failure" label is assigned a value of 1. Consequently, the specific failure mode that led 

to the process failure is not discernible to the machine learning method. 

 

4.2 Programming Language: R and Preparation of the data 

set 

 

Jun.-Prof. Dr. Antoine Tordeux, the Chair of Traffic Safety and Reliability at the 

University of Wuppertal, authored the analysis script specifically for this paper and 

provided it for use. The script comprises correlation analysis, component analysis, and 

classification using diverse machine learning approaches. 
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RStudio program was executed to analyze this data set. The "R" programming 

language is a scripting language designed for statistical data manipulation and analysis. 

Developed by Ross Ihaka and Robert Gentleman at the University of Auckland's 

Department of Statistics, R is open-source software provided free of charge. It is widely 

employed for statistical calculations, including linear and nonlinear modeling, classical 

statistical tests, time series analysis, classification, and clustering. Presently, R is 

compatible with nearly every standard computing platform and operating system, and 

reports indicate successful execution on modern tablets, phones, PDAs, and game 

consoles. Notably, R boasts sophisticated graphics capabilities, offering precise control 

over various aspects of plots or graphs through its base graphics system. Beyond its 

role as a statistics package, R also accommodates machine learning and artificial 

intelligence methods. Its functionality can be expanded through packages, facilitating 

the incorporation of additional features and capabilities [51]. 

 

To conduct the required analyses, it is essential to install a few packages initially (see 

Appendix A). These packages are neuralnet, MASS, corrplot, rpart, rpart.plot, e1071, 

randomForest, LPCM and GGally respectively. The relevant packages and meanings 

are detailed in Table 2. 

 

Table 2 – R Packages and Meanings [52] 

R Package Meanings 

neuralnet Training of Neural Networks 

MASS Support Functions and Datasets for Venables 

and Ripley's MASS 

corrplot Correlation Matrix 

rpart Recursive Partitioning and Regression Trees 

e1071 Support Vector Machine 

randomForest Random Forest 

LPCM Local Principal Curve Methods 

GGally Reducing the complexity of combining geoms 

with transformed data 

Rpart.plot Plot 'rpart' Models: An Enhanced Version of 

'plot.rpart' 
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After the installation of the packages, data recording becomes possible for subsequent 

reading (see Appendix A). It's crucial to note that the file intended for reading should be 

located in the specified directory. Once the dataset is read, pertinent columns are stored 

as both a data frame and a variable. Certain sensor data is omitted from consideration, 

as factors like ID number or product type are irrelevant for classification. The relevant 

measurement variables are then allocated to a separate data frame, encompassing 

parameters such as "air temperature," "process temperature," "rotational speed," 

"torque," and "tool wear." Machine operational states are linked to variables: machine 

failure, TWF, HDF, PWF, OSF, and RNF. These variables assume a value of 0 for the 

operating state and a value of 1 for the failed state, facilitating the classification process. 

 

4.3 Data Analysis 

 

4.3.1 Correlation analysis and principal component analysis 

 

Initially, the dataset underwent analysis, presenting the Minimum and Maximum values, 

1st and 3rd Quantiles, Median, and Mean values for all variables in Table 3. 

 

Table 3 – Statistical Indicators 

 

 

Correlation analysis is essential for examining the connection between variables. In 

order to explore the relationship between variables, a correlation analysis is conducted 

(see Appendix B). Correlation, also referred to as correlation analysis, involves 

examining the association or connection between two or more quantitative variables, 

primarily based on the assumption of a linear relationship. Analogous to measures of 

association for binary variables, correlation evaluates the "strength" or "extent" of the 

association between variables and its direction. The outcome of this analysis is 

expressed through a correlation coefficient, ranging from -1 to +1. A correlation 
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coefficient of +1 indicates a perfect positive (linear) relationship, -1 suggests a perfect 

negative (linear) relationship, and zero signifies no linear relationship between the two 

variables being studied [53]. In this case, the calculation of the correlation is suitable 

for examining the dependence of the six variables. The two-dimensional correlation 

graph visually illustrates the direction and strength of the linear relationship among 

these six variables, and the correlation matrix is presented in Figure 14. 

 

 

 

Figure 14– Correlation matrix of the variables 

 

 

The positive correlations are represented by blue-colored dots, while the negative 

correlations are depicted by red-colored dots. The intensity of the dot's color 

corresponds to the strength of the correlation; darker dots indicate stronger 

correlations. Conversely, lighter-colored dots suggest correlation coefficients close to 

zero, indicating weak correlations between variables. For instance, in the illustration, it 

can be inferred that "Air Temperature" and "Process Temperature" exhibit a linear 

relationship, whereas "Rotational Speed" and "Torque" display a negative correlation. 

The machine failure states HDF and OSF demonstrate mild linear relationships with 
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variables, excluding "Rotational Speed," and exhibit very slight negative relationships 

overall. 

 

Following the correlation analysis, a principal component analysis was conducted (see 

Appendix B). Principal Component Analysis (PCA) is a mathematical technique 

designed to decrease the dimensionality of data while preserving the majority of the 

variation within the dataset. This reduction is achieved by recognizing principal 

components—directions where the data's variation is most significant. Through a 

selection of these components, each sample can be represented with a relatively small 

set of numbers instead of values for numerous variables. This facilitates the 

visualization of samples, allowing for the assessment of similarities and differences, 

and the determination of possible sample groupings [54]. 

 

Table 4 – Principal component analysis data 

 

 

In order to enhance the comprehensibility of the analysis, the standard deviation and 

the proportion of variance are computed for each primary component. The relevant data 

for this analysis is presented in Table 4 and Figure 15. Notably, PC1, PC2, and PC3 

exhibit a higher proportion of variance compared to other components. 

PC1 PC2 PC3 PC4 PC5

Standard 

deviation
1,3823 1,3568 0,9998 0,35543 0,3500

Proportion 

of Variance
0,3821 0,3682 0,1999 0,02527 0,0245

Cumulative 

Proportion
0,3821 0,7503 0,9502 0,9755 1,0000
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Figure 15– Proportion of variance of principal components 

 

The initial three principal components display elevated standard deviation and variance. 

Consequently, an examination of the connection between the machine's condition 

(based on both the main failure and the five sub failure types) and these three principal 

components was conducted, as illustrated in Figures 16,17 and 18. In these plots, 

operational states are denoted by circles and blue color, while failed states are 

represented by triangles and red color. 
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Figure 16– Plot of components 1-2 and 1-3 (Failure 1 and 2) 

 

 

 

Figure 17– Plot of components 1-2 and 1-3 (Failure 3 and 4) 
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Figure 18– Plot of components 1-2 and 1-3 (between Failure 5 and 6) 

 

A correlation analysis was conducted to examine the relationship between the principal 

components and the variables. The findings are presented in Table 5 and Figure 19. It 

is evident that there exists a linear correlation between "Rotational speed" and PC1, 

while "Torque" and PC3 exhibit a non-linear association. No significant relationship is 

observed between "Tool wear" and PC2, however, a notably strong negative correlation 

exists between "Tool wear" and PC3. These correlation patterns are clearly depicted in 

Figure 19, where the relationships are visually represented in a circular manner. 

 

Table 5 – Correlation analysis between principal components and variables 

 

PC1 PC2 PC3 PC4 PC5

Air 

temperature
0.69907255 0.67016533 0.0153211682 -0.1506063195 -0.1981388428

Process 

temperature
0.69787205 0.67139795 0.0157262125 0.1522286529 0.1969225937

Rotational 

speed
0.68627876 -0.68303434 0.0030391755 -0.2004692296 0.1492930175

Torque -0.68079682 0.68851655 0.0004900335 -0.2007074098 0.1489192723

Tool wear 0.02344833 0.01909654 -0.9995422782 -0.0006213836 0.0005881003
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Figure 19– Correlation circles 

 

When categorizing operational states, key components are utilized for prediction. 

Initially, principal component analysis is employed to condense the dataset's 

dimensions. The initial three principal components capture a significant portion of the 

variance. Figure 20 displays a new correlation matrix to assess whether these initial 

three principal components correlate with both main and sub-failures. The analysis 

reveals that the first principal component exhibits a slight negative correlation with OSF. 

PC2 demonstrates weak positive associations with main machine failures, HDF, and 

OSF. Notably, PC4 displays the strongest negative correlation with main machine 

failure and PWF. Conversely, despite the limited positive correlation between PC5 and 

main machine failure, PWF, and OSF, a weak negative correlation is observed with 

HDF. Consequently, all five key components are employed in the condition 

classification process, enhancing the accuracy of the forecasting in condition 

classification. 
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Figure 20– Correlation matrix of principal components and main and sub-failures 

 

 

4.3.2 Classification of operating states according to Data set 

 

Following the correlation and principal components analyses, along with the preparation 

of the dataset, it can be subjected to additional analysis utilizing different algorithms 

(see Appendix C). The objective is to determine which algorithm yields the most 

accurate prediction for both the operating and failed states with minimal error for this 

dataset. The calculation of these errors employs the mean squared error (MSE) as 

outlined in Equation 2. 

 

                                                        𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 −�̂�𝑖)2                                           (2) 

 

where 𝑦𝑖  represents the 𝑖𝑡ℎ  observed value, �̂�𝑖  denotes the corresponding predicted 

value for 𝑦𝑖, and n signifies the total number of observations. The summation symbol ∑ 

denotes that the operation is performed over all values of i. To assess the effectiveness 

of a statistical learning method with a given dataset, its performance is evaluated by 

comparing the predicted data with the observed data. The Mean Squared Error (MSE) 

quantifies the level of error in statistical models by measuring the average squared 
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difference between the observed and predicted values. An MSE of zero indicates a 

model with no error, while increasing model error leads to higher MSE values [55]. 

 

The dataset's observed data is initially split into two distinct data frames: a training set 

and a testing set. The training data predominantly comprises observations from data 

frame X, while the remaining data constitutes the test data. During the training phase, 

algorithms utilize the training data to learn patterns and relationships within the dataset. 

Conversely, the test data remains independent of the training process and is not 

employed in model training. This division into training and testing subsets is crucial for 

enabling robust comparison of results, ensuring the evaluation of model performance 

on unseen data. 

 

The forecast's evaluation involves calculating three types of errors. Error 1 assesses 

the accuracy of algorithms in predicting operational states, while Error 2 evaluates their 

ability to predict failed states. The Total Error reflects the combined performance of 

predicting both operational and failed states. Consequently, the Total Error comprises 

Error 1 and Error 2. The objective is to minimize these errors, enabling the comparison 

of algorithms to determine which one achieves superior state prediction capabilities. 

 

Five distinct algorithms are employed for decision-making purposes: Logistic 

Regression (LR), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random 

Forest (RF), and Support Vector Machine (SVM). Furthermore, these models are 

aggregated using the Consensus ensemble method to form a unified consensus 

function. Ensemble classifiers combine the outputs of multiple autonomous base 

classifiers or machine learners with the aim of enhancing classification accuracy 

beyond what individual classifiers can achieve [56]. In this study, the analysis of data 

obtained from the consensus function involved the use of Minimum, Maximum, and 

Mean values, alongside the utilization of five different algorithms. 

 

This study will explore three distinct scenarios. In the initial scenario, the analysis will 

involve 9661 operational machines with a value of b = 10, based on the dataset. In the 

first alternative scenario, the evaluation will focus on 500 operational machines, with 

the results analyzed under b = 10, maintaining the same number of failure machines. 

For the second alternative scenario, the operational machine count will remain 
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consistent with the first alternative scenario, while the analysis will be conducted with b 

= 50. 

 

 

Figure 21– First results according to Machine Failure 

 

Figure 21 displays the outcomes of algorithm implementation according to Machine 

Failure variable, showcasing error rate distributions through boxplots. These boxplots 

effectively illustrate the scatter of error rates. The spread within the boxplot indicates the 

extent to which error rates deviate from the mean. When error rates exhibit similar values, 

the boxplot's distribution is narrow. Conversely, if error rates vary significantly, the spread 

within the boxplot widens. Narrow spreads in the boxplot are indicative of more accurate 

error rate interpretations, suggesting minimal deviation from the mean.  

 

The initial three plots depict the outcomes concerning total errors. In the leftmost plot, 

the points represent the mean values of Mean Squared Error (MSE) for both training and 

test data. The black dots represent the average error rate during training, while the blue 
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dots denote the average MSE for testing. Subsequent boxplots illustrate the distribution 

of MSE across all algorithms. Each boxplot displays MSE values, providing insight into 

their spread. Additionally, the black lines within the boxplots represent the average 

values of the error rates. 

 

In terms of total error, Random Forest exhibits the lowest error rate during training. 

Furthermore, it maintains a nearly identical rate compared to Random Forest in the 

Maximum value of the algorithms. During testing, Logistic Regression (LR), Linear 

Discriminant Analysis (LDA), Support Vector Machine (SVM), Mean, and Minimum 

values demonstrate almost identical and the lowest error rates. Conversely, the 

Maximum value of the algorithms shows the highest error rate during testing. The error 

rate during testing holds significance for forecasting as the test data differs from the 

training data, and the algorithm solely predicts operational states based on the test data. 

 

In the remaining three plots displayed in the middle, the focus shifts to forecasting 

operational states. In this context, the algorithms exhibit minimal errors due to the 

abundance of data pertaining to operational states within the dataset, enabling more 

accurate forecasts. Random Forest (RF) and the Minimum value of the algorithms nearly 

achieve a 0-error rate for prediction in this category. Similar to the total error analysis, 

the Maximum value of the algorithms yields the highest error rate in predicting 

operational states. 

 

In the final three graphics, the focus is on the error rate of forecasting failed status. The 

error rate is notably high in this case due to the limited data available for failed states 

within the dataset. Consequently, algorithms encounter challenges in accurately 

predicting these states. When comparing the forecasts of operational states and failed 

states, Logistic Regression (LR) and the Minimum value of the algorithms exhibit an 80% 

error rate. Conversely, Random Forest (RF) and the Maximum value of the algorithms 

demonstrate very few errors in predicting failed states. 

 



 

42 

 

Figure 22– First results according to TWF 

 

 

Figure 22 illustrates the results of implementing the algorithm based on variable TWF. 

In the initial three plots, both Random Forest and the Maximum value of the algorithms 

demonstrate the lowest error rates during the training phase. Additionally, the other 

algorithms exhibit nearly similar values but with higher error rates. However, during 

testing, Logistic Regression (LR), Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM), Mean, and Minimum values show almost identical and the lowest error 

rates. In contrast, the Maximum value of the algorithms indicates the highest error rate 

during testing. 

 

Commenting on the middle graphs and the last three graphs is challenging due to the 

limited amount of available data. From the graphs, it's evident that making a precise 

analysis is difficult due to the scarcity of data points. 
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Figure 23– First results according to HDF 

 

 

Figure 23 shows the outcomes of employing the algorithm with variable HDF. In the first 

three plots, Random Forest exhibits the lowest error rates during the training phase. 

Conversely, both LDA and Min algorithms demonstrate the highest error rates, which 

are approximately ten times greater than that of the RF error rate. However, during 

testing, the Min algorithm maintains the highest error rate, similar to during training. 

Interestingly, in the three remaining graphs presented in the center, LDA, Random 

Forest (RF), SVM, mean, and minimum values of the algorithms almost achieve a close 

to perfect prediction scores for this category. This applies to both the training and testing 

stages. However, the "maximum value" method consistently suffers from the highest 

error rate. 
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In the last three visuals, the minimum value of the algorithms exhibits an error rate of 

nearly 50%. Conversely, Random Forest (RF) and the maximum value of the algorithms 

show very few errors during training. Additionally, the maximum value of the algorithms 

boasts the lowest error rate in both training and testing phases. 

 

 

 

Figure 24– First results according to PWF 

 

Figure 24 depicts the results obtained by utilizing the algorithm with different PWF 

settings. In the first three graphs, Random Forest displays the least number of errors 

during the training period. Nevertheless, in the testing phase, LDA shows the highest 

error rates, mirroring its performance during training. 

 

In the subsequent three diagrams depicted in the center, LR, Random Forest (RF), 

SVM, the mean, and the minimum value of the algorithms almost reach a zero-error 

rate for forecasting during both training and testing, similar to the previous phase. 
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However, the "maximum value" and LDA methods consistently experience higher error 

rates compared to others in predicting operational states, which remains consistent 

across both the training and testing stages. 

 

In the last trio of visual representations, Logistic Regression (LR) and the Minimum 

value of the algorithms exhibit the highest error rate in both Training and Test phases. 

Conversely, Random Forest (RF) and the Maximum value of the algorithms showcase 

minimal errors in forecasting failed states during the Training phase. 

 

 

 

Figure 25– First results according to OSF 

 

Figure 25 illustrates the outcomes of applying the algorithm with varying OSF. Initially, 

Random Forest exhibits the lowest error rates during the training phase in the first three 

plots. However, during testing, LDA demonstrates the highest error rates, reflecting its 

performance observed during the training phase. 
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In the following set of three graphs presented in the center, Random Forest (RF) and 

the minimum values of the algorithms nearly attain close-to-perfect prediction scores 

during the Training phase. This pattern is consistent for the minimum values of 

algorithms across both the training and testing stages. However, the maximum value 

of algorithms consistently exhibits higher error rates compared to others in predicting 

operational states. 

 

In the final three visuals, LDA and the minimum value of the algorithms demonstrate an 

error rate of approximately 70%. In contrast, Random Forest (RF) and the maximum 

value of the algorithms exhibit minimal errors during the training phase. Moreover, the 

maximum value of the algorithms achieves the lowest error rate across both the training 

and testing phases. 

 

Understanding the graphs in Figure 26 poses a challenge due to the limited amount of 

available data. It is evident from the graphs that conducting a precise analysis is difficult 

due to the scarcity of data points. 
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Figure 26– First results according to RNF 

 

 

The graphs demonstrate varying algorithm performances across different conditions 

(inclusive of all, healthy, and failure conditions) and types of failures. Upon analysis, it's 

evident that in certain instances, there were too few failed machines to conduct a 

reliable analysis. Consequently, the number of operational machines samples will be 

reduced to 500 while maintaining the same number of failed machines. Additionally, in 

the initial scenario, algorithms were executed only 10 times. In the forthcoming analysis, 

a decision will be made to increase this repetition count, allowing for an exploration of 

its impact on the results. 
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4.3.3 Classification of operating states according to alternative scenario 

1 

 

In this section of the paper, new findings were achieved by decreasing the quantity of 

operational machines to 500 (see Appendix D) while maintaining a consistent number 

of algorithms runs at 10.  

 

 

 

Figure 27– Results according to Machine Failure with 500 operational machines 

 

Figure 27 depicts the results obtained from applying the algorithm across all instances 

of machine failures. In comparison to Figure 21, within the initial three plots of the 

Training section, there was an observed rise of 2-4 times in the Mean Squared Error 

(MSE) values for each algorithm except for RF. A comparable trend was noticed in the 
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Testing section, accompanied by an expansion in the range between the minimum and 

maximum quartiles of the boxplots. 

 

In the three remaining graphs displayed in the center, RF and the minimum values of 

the algorithms nearly reach close-to-perfect prediction scores, resembling the previous 

conditions observed during training. Nevertheless, akin to the training graph 

encompassing all machines, there is a pronounced surge in the MSE value. A similar 

scenario persists in the Test section, where the gap between the minimum and 

maximum quartiles in the boxplots continues to widen. 

 

In the final three visuals, within both the Training and Test graphs, unlike the scenarios 

involving all machine states and operational machine states, there is a substantial 

decrease in MSE values. In both instances, numerous algorithms exhibit error rates 

approaching zero. 

 

Figure 28 illustrates the outcomes derived from implementing the algorithm across 

TWF. In Figure 22, noteworthy outcomes were not achieved due to the minimal number 

of failures in comparison to operational machines. However, with the operational 

machines reduced to 500 in Figure 28, clearer and more interpretable results were 

obtained. 

 

Compared to Figure 22, in the first three plots of the Training and Test section, it is 

evident that there is a notable rise in the MSE value across all instances of machine 

failure. Additionally, there is an observable widening in the range between the minimum 

and maximum quartiles of the boxplots in both scenarios. 

 

In contrast to Figure 22, the current graphs exhibit interpretable outcomes. In the 

training section, RF demonstrates results that are nearly perfect, mirroring many other 

instances. Despite the dissimilarity in performance among other algorithms, the overall 

situation is promising due to their notably low MSE values. Similarly, MSE values in the 

test section are also low. Given the proximity of algorithm values to each other, it 

becomes challenging to ascertain which one yields the most optimal results. 

 



 

50 

In the last three visuals, both in the Training and Test graphs, there is a decline 

observed in nearly all MSE values. 

 

 

 

Figure 28– Results according to TWF with 500 operational machines 

 

Figure 29 presents the results obtained from utilizing the HDF algorithm. Contrary to 

Figure 23, the initial three plots within both the Training and Test sections exhibited a 

notable rise in the Mean Squared Error (MSE) values for each algorithm. Notably, only 

RF's MSE value remained unchanged in the Training section. Additionally, an increase 

in the range between the minimum and maximum quartiles of the boxplots was 

observed in the Testing section. 
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Figure 29– Results according to HDF with 500 operational machines 

 

 

In the three remaining graphs shown in the middle, RF and the minimum values of the 

algorithms almost achieve near-perfect prediction scores during Training. Additionally, 

LR, SVM, and the mean of algorithms also exhibit similar performance. However, during 

the test phase, in comparison to Figure 23, a notable increase was observed in the 

MSE values of LDA, RF, SVM, and the Mean of algorithms, deviating from the near-

perfect MSE value. This is evident in the Test section, where the gap between the 

minimum and maximum quartiles in the boxplots continues to widen. 

 

In the last three graphs within the Training section, there's a considerable reduction in 

MSE values compared to scenarios involving all machine states and operational 
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machine states. Several algorithms have approached perfection. In the test scenario, a 

noticeable decrease in MSE values was observed for many algorithms, mirroring the 

trend seen in the Training scenario. 

 

 

 

Figure 30– Results according to PWF with 500 operational machines 

 

Figure 30 depicts the outcomes achieved through the utilization of the PWF algorithm. 

In contrast to Figure 24, there was a noticeable increase in the Mean Squared Error 

(MSE) values for nearly every algorithm in the initial three plots within both the Training 

and Test sections. Interestingly, the MSE value of LDA decreased in almost both cases. 

Additionally, RF's MSE value remained unchanged in the Training section. 
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In the subsequent three graphs positioned centrally, RF and the minimal values of the 

algorithms nearly attained predictions bordering on perfection during the Training 

phase. Additionally, the minimum values of the algorithms maintained identical 

predictions during the Test phase as in Training. Nonetheless, throughout both phases, 

a substantial escalation in the MSE values for nearly all algorithms was observed in 

comparison to Figure 24. Notably, in the Test section, there was a widening gap 

between the minimum and maximum quartiles in the boxplots. 

 

In the final three graphs, a significant decrease in MSE values is evident compared to 

scenarios encompassing all machine states and operational machine states during 

Training. Multiple algorithms have neared perfection. Similarly, in the test scenario, a 

noticeable decrease in MSE values was observed for many algorithms, reflecting the 

trend observed in the Training scenario. Additionally, the maximum values of the 

algorithms have achieved perfection. 

 

Figure 31 illustrates the results obtained from employing the OSF algorithm. Unlike 

Figure 25, there was a clear rise in the Mean Squared Error (MSE) values across almost 

all algorithms in the first three plots in both the Training and Test sections. Furthermore, 

the MSE value for RF stayed consistent and demonstrated perfect predictive 

performance in the Training section. 

 

In the following three centrally positioned graphs, RF and the mean and minimum 

values of the algorithms approached predictions close to perfection during the Training 

phase. Furthermore, the minimum values of the algorithms maintained consistent 

predictions during the Test phase as observed in Training. However, across both 

phases, a significant increase in the MSE values for almost all algorithms was noted 

compared to Figure 25. 
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Figure 31– Results according to OSF with 500 operational machines 

 

In the last three graphs, there's a notable reduction in MSE values compared to 

situations involving all machine states and operational machine states during Training. 

RF, Mean, and maximum of algorithms have approached perfection. Similarly, in the 

test scenario, a distinct decrease in MSE values was noted for all algorithms, mirroring 

the trend seen in the Training scenario. Furthermore, the maximum of the algorithms 

has reached perfection during the Test phase, like the Training phase. 
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Figure 32– Results according to RNF with 500 operational machines 

 

Figure 32 depicts the results obtained from applying the algorithm across RNF. In 

Figure 26, significant results weren't attained because of the limited instances of failure 

when contrasted with operational machines. Nonetheless, in Figure 28, where the 

operational machines are reduced to 500, although there remain aspects that are 

challenging to analyze, more understandable outcomes were achieved compared to 

Figure 26. 

 

When comparing Figure 26, within the initial three plots of the Training and Test section, 

a significant increase in the MSE value is apparent across nearly all instances of 

machine failure. Only RF maintained the ideal MSE value, as observed in the initial 

scenario. 
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Providing detailed analysis for the middle graphs and the last three graphs is 

challenging due to the scarcity of available data in the initial scenario. Specifically, in 

the Training graph for operational machines in the middle section, a minimal MSE value 

was observed for the LDA and maximum of algorithms, a trend also observed in the 

Test case. Although minor changes are noted in the last three graphs, the overall 

situation closely resembles that of Figure 26. In summary, the limited data points make 

it challenging to conduct a precise analysis. 

 

4.3.4 Classification of operating states according to alternative scenario 

2 

 

In this section of the paper, novel findings were made by maintaining a constant number 

of operational machines at 500 and elevating the consistent number of algorithms runs 

to 50, in contrast to the previous scenario. In this section, the obtained results will be 

compared with those from the first and second case scenarios. 

 

Figure 33 illustrates the outcomes derived from implementing the algorithm across all 

instances of machine failures. When compared to Figure 21, there was an observed 

increase of 2-4 times in the Mean Squared Error (MSE) values for each algorithm within 

the initial three plots of the Training section, except for RF. The results are nearly 

identical to the Training graph in Figure 27. However, the widening trend observed in 

the range between the minimum and maximum quartiles of the boxplots seen in Figure 

27 has diminished for many algorithms in Test scenario, resulting in improved MSE 

values. 

 

In the three remaining graphs shown in the middle, RF and the minimum values of the 

algorithms almost achieve close-to-perfect prediction scores, like the first two scenarios 

during training. Despite a notable increase in the MSE value compared to Figure 21, 

similar MSE values were obtained as in the first Training graph, as seen in Figure 27. 

A similar pattern is observed in the testing section.  

 

In the final three visuals, a substantial decrease in MSE values is noted in both the 

Training and Test graphs compared to Figure 21. This is unlike the scenarios involving 

all machine states and operational machine states, where very similar results are 

observed with Figure 27 during Training. Aside from this, the widening trend observed 
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in the range between the minimum and maximum quartiles of the boxplots seen in 

Figure 27 has decreased for many algorithms in the Test scenario and a decrease in 

MSE values was observed. 

 

 

 

Figure 33– Results according to Machine Failure with 500 operational machines and 50 

repetitions 

 

Figure 34 depicts the results obtained from applying the algorithm across TWF. 

Contrasting with Figure 22, there has been a notable rise observed in the Mean 

Squared Error (MSE) values for nearly every algorithm within the first three plots of the 

Training section, except for RF. The outcomes closely resemble those in the Training 

graph of Figure 28. Nevertheless, the widening trend seen in the range between the 

minimum and maximum quartiles of the boxplots in Figure 2 has decreased for several 

algorithms in the Test scenario, leading to enhanced MSE values. 
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In the remaining graphs illustrating operational and failure scenarios, no discernible 

results were acquired for Figure 22 that could be elaborated upon. 

 

 

 

Figure 34– Results according to TWF with 500 operational machines and 50 repetitions 

 

On the other hand, RF and the minimum values of the algorithms nearly reach near-

perfect prediction scores for the three remaining graphs depicted in the middle, 

resembling Figure 28 during training. Comparable MSE values were attained as in the 

initial Training graph, akin to Figure 28. Additionally, a similar pattern is noted in the 

testing section. 

 

In the last three visuals, very similar results to Figure 28 during Training are observed. 

Apart from this, the widening trend seen in the range between the minimum and 
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maximum quartiles of the boxplots in Figure 28 has diminished for many algorithms in 

the Test scenario. Commenting on MSE values is challenging. While in some cases 

there was a slight increase or decrease, in others, it remained constant. 

 

 

 

Figure 35– Results according to HDF with 500 operational machines and 50 repetitions 

 

Figure 35 delineates the outcomes derived from applying the algorithm across HDF. In 

contrast to Figure 23, a conspicuous elevation in Mean Squared Error (MSE) values 

was noted for each algorithm within the initial three plots of the Training scenario, 

except for RF. During the test scenario, in conjunction with notable increments in MSE 

values, algorithms exhibiting MSE values akin to those depicted in Figure 23 are also 

discerned. The findings closely mirror those of the Training graph in Figure 29. Offering 
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commentary on MSE values during the Test phase poses a challenge. While minor 

fluctuations were evident in certain instances, in others, they remained static. 

 

In the three intermediary graphs presented, RF and the minimal values of the algorithms 

nearly attain prediction scores close to perfection, akin to the initial two scenarios during 

training. Despite a significant uptick in the MSE value in comparison to Figure 23, 

similar MSE values were acquired as those in the primary Training graph, as depicted 

in Figure 29. A parallel pattern is evident in the testing section across these two 

scenarios. 

 

In the last three visuals, a significant decline in MSE values is observed in both the 

Training and Test graphs compared to Figure 23. This contrasts with the scenarios 

encompassing all machine states and operational machine states, where very 

comparable results are seen with Figure 29 during Training. Moreover, the widening 

trend noticed in the range between the minimum and maximum quartiles of the boxplots 

observed in Figure 29 has diminished for many algorithms in the Test scenario. 

Additionally, alongside LDA and the Maximum of algorithms, RF and Mean of 

algorithms approach perfect MSE values. 

 

Figure 36 illustrates the results obtained by implementing the algorithm across PWF. In 

contrast to Figure 24, certain algorithms showed an uptick in Mean Squared Error 

(MSE) values in the initial three graphs of the training scenario, while others 

demonstrated consistent outcomes. Notably, in the testing scenario, the MSE value for 

the LDA algorithm remained relatively unchanged, yet there were significant increases 

in MSE values across nearly all algorithms. These findings closely resemble those 

depicted in the Training graph in Figure 30. While some MSE values exhibited similarity 

during the testing phase, there were observed increases in the values for certain 

algorithms. 

 

In the three intermediary graphs provided, RF and the minimum values of the algorithms 

almost achieve prediction scores close to perfection, resembling the initial two 

scenarios observed during training. Despite a notable increase in the MSE value 

compared to Figure 24, comparable MSE values were obtained to those depicted in the 

primary Training graph as illustrated in Figure 30. However, superior outcomes were 

attained for DT and Max algorithm values. Although considerably higher MSE values 
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are apparent in the Test case relative to Figure 24, some decreases are also evident 

alongside results akin to those seen in Figure 30. 

 

In the last three visuals, a notable decrease in MSE values is noted in both the Training 

and Test graphs compared to Figure 24. Conversely, there are MSE values very similar 

to those in Figure 30. While the variance between the minimum and maximum quartiles 

of the boxplots seen in Figure 30 remains consistent for many algorithms in the Test 

scenario, there is a significant reduction in the DT and Minimum of algorithms. 

 

 

Figure 36– Results according to PWF with 500 operational machines and 50 repetitions 

 

Figure 37 depicts the outcomes of applying the algorithm across OSF. Unlike Figure 

25, a noticeable rise in Mean Squared Error (MSE) values was observed for every 

algorithm within the first three plots of the Training scenario, except for RF. This 

significant increase in the MSE value is evident across all algorithms in the Test case. 



 

62 

Similar results were obtained in both the Training and Test scenarios in Figure 36, 

resembling those in Figure 37. 

 

 

 

Figure 37– Results according to OSF with 500 operational machines and 50 repetitions 

 

In the three intermediary graphs presented, RF and the minimum values of the 

algorithms nearly reach prediction scores close to perfection, mirroring the initial two 

scenarios observed during training. Despite a notable increase in the MSE value 

compared to Figure 25, very similar results were obtained compared to the situation 

depicted in Figure 31 during Training. Although considerably higher MSE values are 

evident in the Test case relative to Figure 25, similar results have also been observed. 

When comparing Figure 31 with the Test Case, it is challenging to comment on the 
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trend within the range between the minimum and maximum quartiles of the box plots 

due to the presence of different scenarios. 

 

In the final three visuals, a significant reduction in MSE values is observed in both the 

Training and Test graphs when compared to Figure 25. Conversely, there are MSE 

values that closely resemble those depicted in Figure 31. While the variability between 

the minimum and maximum quartiles of the box plots observed in Figure 31 remains 

consistent for numerous algorithms in the Test scenario. 

 

 

 

Figure 38– Results according to RNF with 500 operational machines and 50 repetitions 

 

Figure 38 illustrates the outcomes generated by implementing the algorithm across RNF. 

In contrast to Figure 26, a clear increase in Mean Squared Error (MSE) values was noted 
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for each algorithm in the initial three plots of the Training scenario, except for RF. 

Furthermore, this notable elevation in the MSE value is apparent across all algorithms in 

the Test case. Comparable findings were observed in both the Training and Test 

scenarios depicted in Figure 32, mirroring those in Figure 38. In the test graph, only 

minor variations were detected in the LDA and DT algorithms. 

 

Performing a detailed analysis for the middle graphs and the last three graphs presents 

difficulties due to the limited data available in the initial scenario. Drawing conclusions 

from the Training and Test graphs in Figure 26 is not feasible. Specifically, in the Training 

graph concerning operational machines in the middle section, minimal MSE values were 

observed for the LDA and the majority of algorithms, a pattern also evident in the Test 

case as depicted in Figure 32. Although some minor changes are observed in the last 

three graphs, the overall situation closely resembles that of Figure 32. In summary, the 

scarcity of data points makes it challenging to conduct a precise analysis for these three 

cases. 

 

4.4 Evaluation, comparison, and interpretation of the 

results 

 

In Section 4.3 displays various machine conditions, including operational and failed 

machines, for different machine learning algorithms using boxplot graphics generated 

with R. These conditions encompass both training and testing scenarios, as well as 

their simultaneous occurrence. 

 

This section utilizes machine failure data encompassing the entire dataset to analyze 

and interpret the results obtained in the preceding section. A comparison is drawn 

between these results. The outcomes are depicted through line graphs, separately 

illustrating Training and Testing cases. They are categorized based on Total error, Error 

1, and Error 2, presented across six graphs labeled as Figure 39 through Figure 44. 

 

During the graph preparation process, the three leftmost graphs were constructed, 

encompassing all three machine states. These graphs display both Training and 

Testing results derived from the outcome graphs in the previous section. They are 

based on the average Mean Squared Error (MSE) value for all algorithms. To facilitate 
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comparison, the data is organized into nine distinct cases, each characterized by 

specific features: 

 

Case 1: Total Error, 500 operational machines, 10 repetitions 

Case 2: Error 1, 500 operational machines, 10 repetitions 

Case 3: Error 2, 500 operational machines, 10 repetitions 

Case 4: Total Error, 500 operational machines, 50 repetitions 

Case 5: Error 1, 500 operational machines, 50 repetitions 

Case 6: Error 2, 500 operational machines, 50 repetitions 

Case 7: Total Error, 9661 operational machines, 10 repetitions 

Case 8: Error 1, 9661 operational machines, 10 repetitions 

Case 9: Error 2, 9661 operational machines, 10 repetitions 

 

Each graph compares three cases, delineated according to Total Error, Error 1, and 

Error 2. This arrangement allows for clear separation and comparison across the 

different error metrics. 

 

 

 

Figure 39– Comparison of average MSE values according to Total Error and Testing case 
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Figures 39 and 40 depict the outcomes derived from operational and failed machines. 

These graphs distinctly illustrate that the Mean Squared Error (MSE) value of the 

Random Forest algorithm notably surpasses that of other algorithms, yielding the most 

favorable results for this dataset. Following suit are SVM and the Mean of algorithms. 

Upon scrutinizing these graphs, it becomes evident that the number of repetitions 

doesn't exert a significant influence on the outcomes. However, a notable impact of the 

quantity of operational machines is observed. Furthermore, as the count of operational 

machines rises, the MSE values of the Decision Tree (DT) and Maximum of algorithms 

exhibit superior performance compared to SVM and the Mean algorithm. 

 

 

 

Figure 40– Comparison of average MSE values according to Total Error and Training case 
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Figures 41 and 42 illustrate the results obtained from operational machines. As 

anticipated, the Mean Squared Error (MSE) values are notably low, given that these 

graphs specifically represent outcomes from operational machines. Notwithstanding 

this circumstance, upon interpretation of these graphs, it can be inferred that the 

Minimum algorithm value yields the most favorable result for this particular case. 

 

 

 

Figure 41– Comparison of average MSE values according to Error 1 and Training case 

 

 

 

Figure 42– Comparison of average MSE values according to Error 1 and Testing case 
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Figures 43 and 44 display the results obtained from failed machines. As anticipated, 

the Mean Squared Error (MSE) values for certain algorithms are notably high, given 

that these graphs specifically represent the outcomes of failed machines. Despite this 

expected outcome, upon analysis of these graphs, it can be deduced that the Maximum 

of algorithms produces the most favorable result for this specific case. The Random 

Forest algorithm also demonstrates comparable results in this regard. 

 

 

 

Figure 43– Comparison of average MSE values according to Error 2 and Testing case 

 

 

 

Figure 44– Comparison of average MSE values according to Error 2 and Training case 
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Figure 45– Comparison of average MSE values for all cases 

 

In Figure 45, the results from all cases are compared without discrimination. It is evident 

that the Random Forest algorithm yields the most suitable results for this dataset and the 

given parameters. The Maximum of algorithm and Decision Tree algorithms also exhibit 

favorable performance. Conversely, the Minimum of Algorithm, LR, and LDA algorithms 

demonstrate the highest MSE values. 

 

These findings suggest that the dataset comprises nonlinear data. Linear algorithms 

performed poorly in the analysis. Notably, the Minimum, Mean, and Maximum values of 

the function derived through the consensus ensemble method did not yield substantially 

different results. 
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5 Conclusion 

 

The rise of Industry 4.0 marks a new era in manufacturing characterized by 

interconnected cyber-physical systems, leading to unprecedented levels of efficiency 

and productivity. Core elements of this shift include Cloud Manufacturing, enabling 

decentralized production and real-time data sharing, alongside the integration of IoT 

devices facilitating seamless communication and control across the manufacturing 

environment. A significant advantage of Industry 4.0 lies in leveraging Big Data to gain 

valuable insights from vast amounts of information generated within the production 

process. This data forms the basis for advanced analytics and decision-making, driving 

enhancements in performance, quality, and cost-effectiveness. 

 

Reliability Engineering within Industry 4.0 plays an important role in ensuring the strength 

and resilience of cyber-physical systems, minimizing downtime, and maximizing uptime. 

Predictive Maintenance stands out as a cornerstone, utilizing advanced technologies 

and methodologies to anticipate equipment failures proactively. Through methods such 

as Condition-Based Monitoring and statistical techniques, manufacturers can identify 

potential issues beforehand, avoiding costly unplanned downtime and disruptions to 

production. 

 

Machine Learning techniques further bolster the predictive maintenance capabilities of 

Industry 4.0, enabling systems to learn and adapt based on historical data patterns and 

real-time sensor readings. Continuous analysis and refinement of predictive models 

empower manufacturers to optimize maintenance schedules, prolong equipment 

lifespans, and ultimately enhance efficiency and competitiveness. 

 

In the thesis's, sensor data with diverse parameters undergoes scrutiny using the R 

programming language to evaluate and compare various predictive maintenance 

methods. To accomplish this classification, an array of statistical methods and machine 

learning algorithms are employed, comprising Logistic Regression, Linear Discriminant 

Analysis, Decision Trees, Random Forests, Support Vector Machines, and Consensus 

functions like Minimum, Maximum, and Mean values. 
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Upon analyzing all the findings, it becomes apparent that the most suitable algorithm for 

this dataset is Random Forest, followed by the Maximum of algorithm and Decision Tree 

algorithms. Conversely, the three algorithms showing the weakest results are Minimum 

of Algorithm, LR, and LDA. 

 

These results imply that the dataset contains nonlinear data, as indicated by the superior 

performance of Random Forest and other nonlinear algorithms. Additionally, it seems 

that the function values obtained through the consensus ensemble method do not 

significantly influence the overall outcome. 

 

As the Industry 4.0 era is entered, the integration of Reliability Engineering and Predictive 

Maintenance becomes increasingly crucial for enhancing industrial processes' efficiency. 

A comparative examination centered on failure analysis and evaluation utilizing machine 

learning methods will remain pivotal in enhancing operational effectiveness, reducing 

downtime, and curtailing maintenance expenses across diverse sectors. With 

advancements in data analytics and machine learning algorithms, we anticipate the 

emergence of more advanced predictive maintenance approaches, enabling the 

proactive identification and mitigation of equipment failures prior to their occurrence. This 

realm of investigation will play a significant role in shaping the future of industrial 

maintenance methodologies by fostering a transition towards predictive and prescriptive 

maintenance models to align with the evolving needs of contemporary manufacturing 

environments. 
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Appendix A and B 

## Install the packages (it may take a few minutes) 

 

install.packages('neuralnet');require(neuralnet) 

install.packages('MASS');require(MASS) 

install.packages('corrplot');require(corrplot) 

install.packages('rpart');require(rpart) 

install.packages('rpart.plot');require(rpart.plot) 

install.packages('e1071');require(e1071) 

install.packages('randomForest');require(randomForest) 

install.packages('LPCM');require(LPCM) 

install.packages('GGally');library(GGally) 

## Download and read the data 

 

download.file('https://raw.githubusercontent.com/antoinetordeux/Dat

asets/main/ai4i2020.csv','/content/ai4i2020.csv') 

data=read.csv("ai4i2020.csv",header=TRUE) 

names(data) 

summary(data) 

Y=cbind(data[,9:14])==1 

X=data[,4:8] 

## Plot the results 

for(i in 1:5) 

  hist(X[,i],main=names(X)[i]) 

for(i in 1:5) 

  hist(as.numeric(Y[,i]),main=names(Y)[i]) 

 

sum(YY[,6]) 

 

Appendix A– Preparation of data for analysis 

 

## Correlation analysis 

 

cor(cbind(X,Y)) 

corrplot(cor(cbind(X,Y))) 

 

## Principal component analysis 

 

PCA=prcomp(X,scale.=T) 

summary(PCA) 

plot(PCA) 

PC=as.data.frame(PCA$x) 

cor(X,PC) 

corrplot(cor(cbind(PC,Y))) 
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plot_circle_correlation=function(a,b){ 

  plot(cos(seq(0,2*pi,.01)),sin(seq(0,2*pi,.01)),xlab=paste("Princi

pal Composant",a),ylab=paste("Principal 

Component",b),type='l',xlim=c(-1,1),ylim=c(-1,1)) 

  for(i in 1:length(cor(X,PC)[,b])){ 

    segments(0,0,cor(X,PC)[i,a],cor(X,PC)[i,b],col=i); 

    lines(cor(X,PC)[i,a],cor(X,PC)[i,b],type='p',pch=i,col=i)} 

    legend("topleft",names(X),pch=1:ncol(X),col=1:ncol(X),cex=.8,bt

y='n')} 

 

plot_component=function(a,b,k){ 

  plot(PC[,a],PC[,b],xlab=paste("PC",a),ylab=paste("PC",b),pch=1+as

.integer(Y[,k]),col=rgb(as.integer(Y[,k]),0,1-

as.integer(Y[,k]),.2)) 

  lines(c(mean(PC[!Y[,k],a]),mean(PC[Y[,k],a])),c(mean(PC[!Y[,k],b]

),mean(PC[Y[,k],b])),type='p',pch=c(16,17),col=c(4,2)) 

  legend("topleft",legend=k,title="Failure",cex=.8,bty='n')} 

 

par(mfrow=c(2,2),mar=c(4,4,4,4)) 

for(pc in 2:5) 

  plot_circle_correlation(1,pc) 

 

par(mfrow=c(2,2),mar=c(3,3,2,2),mgp=c(1.5,.5,0)) 

for(k in 1:6){ 

  plot_component(1,2,k) 

  plot_component(1,3,k) 

  } 

 

 

Appendix B– Correlation analysis and principal component analysis 
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Appendix C 

## Classification 

 

MSE=function(M,Y,k){ 

  mse=mean((M-Y)^2) 

  if(k==2) mse=mean((M[!Y]-Y[!Y])^2) 

  if(k==3) mse=mean((M[Y]-Y[Y])^2) 

  mse} 

 

algo_name=function(){ 

  axis(1,at=c(1,3,5,7),lab=c("LR","DT","SVM","Min")) 

  axis(3,at=c(2,4,6,8),lab=c("LDA ","RF","Mean","Max"))} 

 

B=10 

 

train=matrix(0,B,8) 

test=matrix(0,B,8) 

 

plotPred=function(Y){ 

  par(mfrow=c(3,3),mar=c(3,4,4,2),mgp=c(2,.5,0)) 

  options(warn=-1) 

  for(err in 1:3){ 

    for(b in 1:B){ 

 

      ## Cross-validation sampling 

      cc=NULL;n=nrow(X) 

      cc[1:n]=T;cc[sample(1:n,.2*n)]=F 

 

      ## Logistic Regression 

      algo_REG=glm(Y[cc]~.,data=PC[cc,],family=binomial(logit)) 

      LRtrain=predict(algo_REG,PC[cc,])>0 

      LRtest=predict(algo_REG,PC[!cc,])>0 

      train[b,1]=MSE(LRtrain,Y[cc],err) 

      test[b,1]=MSE(LRtest,Y[!cc],err) 

 

      ## Linear Discriminant Analysis 

      algo_LDA=lda(Y[cc]~.,data=PC[cc,]) 

      LDAtrain=as.numeric(predict(algo_LDA,PC[cc,])$class)-1 

      LDAtest=as.numeric(predict(algo_LDA,PC[!cc,])$class)-1 

      train[b,2]=MSE(LDAtrain,Y[cc],err) 

      test[b,2]=MSE(LDAtest,Y[!cc],err) 

 

      ## Decision Tree 

      algo_DT=rpart(Y[cc]~.,data=X[cc,],method="class") 

      DTtrain=as.numeric(predict(algo_DT,X[cc,],type="class"))-1 

      DTtest=as.numeric(predict(algo_DT,X[!cc,],type="class"))-1 
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      train[b,3]=MSE(DTtrain,Y[cc],err) 

      test[b,3]=MSE(DTtest,Y[!cc],err) 

 

      ## Random Forest 

      algo_RF=randomForest(as.factor(Y[cc])~.,data=X[cc,]) 

      RFtrain=as.numeric(predict(algo_RF,X[cc,]))-1 

      RFtest=as.numeric(predict(algo_RF,X[!cc,]))-1 

      train[b,4]=MSE(RFtrain,Y[cc],err) 

      test[b,4]=MSE(RFtest,Y[!cc],err) 

 

      ## Support Vector Machine 

      algo_SVM=svm(as.factor(Y[cc])~.,data=PC[cc,]) 

      SVMtrain=as.numeric(predict(algo_SVM,PC[cc,]))-1 

      SVMtest=as.numeric(predict(algo_SVM,PC[!cc,]))-1 

      train[b,5]=MSE(SVMtrain,Y[cc],err) 

      test[b,5]=MSE(SVMtest,Y[!cc],err) 

 

      ## Mean value of the algorithms 

      MEANtrain=round(apply(cbind(LRtrain,LDAtrain,DTtrain,RFtrain,

SVMtrain),1,mean)) 

      MEANtest=round(apply(cbind(LRtest,LDAtest,DTtest,RFtest,SVMte

st),1,mean)) 

      train[b,6]=MSE(MEANtrain,Y[cc],err) 

      test[b,6]=MSE(MEANtest,Y[!cc],err) 

 

      ## Min value of the algorithms 

      MINtrain=apply(cbind(LRtrain,LDAtrain,DTtrain,RFtrain,SVMtrai

n),1,min) 

      MINtest=apply(cbind(LRtest,LDAtest,DTtest,RFtest,SVMtest),1,m

in) 

      train[b,7]=MSE(MINtrain,Y[cc],err) 

      test[b,7]=MSE(MINtest,Y[!cc],err) 

 

      ## Max value of the algorithms 

      MAXtrain=apply(cbind(LRtrain,LDAtrain,DTtrain,RFtrain,SVMtrai

n),1,max) 

      MAXtest=apply(cbind(LRtest,LDAtest,DTtest,RFtest,SVMtest),1,m

ax) 

      train[b,8]=MSE(MAXtrain,Y[cc],err) 

      test[b,8]=MSE(MAXtest,Y[!cc],err) 

    } 

 

    yl=range(train,test) 

    m="Total error\n";if(err==2) m="Error 1\n";if(err==3) m="Error 

2\n" 

    plot(apply(train,2,mean),xlab="",ylab="Mean boostrap-

MSE",xaxt='n',ylim=yl,main=m);algo_name() 
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    lines(apply(test,2,mean),type='p',col=4) 

    legend("bottomleft",c("Training","Testing"),pch=c(1,1),col=c(1,

4),cex=.7,bty='n') 

    boxplot(train,xlab="",ylab="boostrap-MSE: 

boxplot",xaxt='n',ylim=yl,main="Training\n");algo_name() 

    boxplot(test,xlab="",ylab="boostrap-MSE: 

boxplot",xaxt='n',ylim=yl,col=4,main="Test\n");algo_name() 

  } 

} 

## Machine failure 

 

plotPred(Y[,1]) 

sum(Y[,1]) 

## Failure 1 

 

plotPred(Y[,2]) 

sum(Y[,2]) 

 

## Failure 2 

 

plotPred(Y[,3]) 

sum(Y[,3]) 

## Failure 3 

 

plotPred(Y[,4]) 

sum(Y[,4]) 

## Failure 4 

 

plotPred(Y[,5]) 

sum(Y[,5]) 

## Failure 5 

 

plotPred(Y[,6]) 

sum(Y[,6]) 

 

Appendix C– Classification of operating states using statistical methods and machine learning 

algorithms 
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Appendix D 

 

## Balancing the data set (use of only 500 operational 

observations) 

XX=NULL 

YY=NULL 

XX=rbind(XX,X[Y[,1]|Y[,6],]) 

YY=rbind(YY,Y[Y[,1]|Y[,6],]) 

 

XX=rbind(XX,X[!(Y[,1]|Y[,6]),][1:500,]) 

YY=rbind(YY,Y[!(Y[,1]|Y[,6]),][1:500,]) 

X=XX 

Y=YY 

 

Appendix D– Setting the number of operational machines to 500 

 


