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Motivation Objectives

* Pedestrian trajectory prediction 1s a hot topic due to many real world e We train and test the algorithm with ETH and UCY pedestrian trajectory
applications like autonomous vehicles or social robots. datasets.

e Deep Learning algorithms have shown to outperform the physics- e The predictions are evaluated with the distance based average displace-
based models in terms of distance error. ment error (ADE) and a distance-based collision metric (Col).

* Nevertheless, the predictions show too many collision and overlaps, e We use the Social LSTM from Alahi et al. [1] as baseline and as core
especially at higher densities. for the new TTC-SLSTM algorithm.

e In this work, we want to implement Time-To-Collision into the archi- e The prediction results with SLSTM and TTC-SLSTM are compared
tecture of the Deep learning algorithms to improve collision avoidance. using the two evaluation metrics ADE and Col.

New TTC-SLSTM

TTC error metric \ algorithm

e The TTC metric estimates how long it would take for two pedestrians to * The core of the TTC-SLSTM 1s the SLSTM. We keep
collide with each other 1f they continue to move at their current velocity. the settings, but add TTC in the loss function L

* Based on this concept, we create an sigmoidal T L =ADE + \L,, A >0
error metric L, low TTC resulting in high
loss. * The parameter )\ quantifies the impact of TTC loss on
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Results \

Prediction results with different A settings
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Fig. 2: Testing prediction error metrics against \ Fig. 3: Trajectory predictions with TTC-SLSTM and SLSTM
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e Explore the performance of other hybrid deep learning architectures including
time-to-collision and pedestrian-related metrics.
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