

Collision-free first order pedestrian model

TGF'15 • October 28-30, 2015 • Nootdorp | Antoine Tordeux,⁴ Mohcine Chraibi⁵ and Armin Seyfried⁶ | Forschungszentrum Jülich GmbH and Wuppertal University

⁴a.tordeux@fz-juelich.de
⁵m.chraibi@fz-juelich.de
⁶a.seyfried@fz-juelich.de

Motivations

Inertial force-based (Newtonian) pedestrian models described many features of crowd dynamics, yet inertia potentially induces

- Local oscillations (cf. harmonic oscillator / 2nd order equation)
- Collision (overlapping) and uncontrolled motion backward
- Restricted parameter values or adding of parameters and speed difference terms to get realistic dynamics / Difficult calibration
- Numerical difficulties resulting in small time steps and high computational complexity

Motivations

Inertial force-based (Newtonian) pedestrian models described many features of crowd dynamics, yet inertia potentially induces

- Local oscillations (cf. harmonic oscillator / 2nd order equation)
- Collision (overlapping) and uncontrolled motion backward
- Restricted parameter values or adding of parameters and speed difference terms to get realistic dynamics / Difficult calibration
- Numerical difficulties resulting in small time steps and high computational complexity
- $\rightarrow\,$ Development of collision-free first order models

Overview

- 1. Existing first order pedestrian models
- 2. Collision-free property
- 3. OV model
- 4. Model for the direction
- 5. Simulation results
- 6. Conclusions and working perspectives

Overview

- 1. Existing first order pedestrian models
- 2. Collision-free property
- 3. OV model
- 4. Model for the direction
- 5. Simulation results
- 6. Conclusions and working perspectives

Notations

- \mathbf{x}_i Position of pedestrian i
- \mathbf{v}_i Speed of pedestrian i
- θ_i Direction of pedestrian *i*

 $\begin{array}{ll} \ell & \text{Pedestrian size} \\ \mathbf{e}_{i,j} & \text{Unit vector from } \mathbf{x}_j \text{ to } \mathbf{x}_i \\ \mathbf{e}_i = (\cos \theta_i, \sin \theta_i) & s_{i,j} = ||\mathbf{x}_i - \mathbf{x}_j|| \end{array}$

Existing first order pedestrian models

First order models : Velocity function

 $\dot{\mathbf{x}}_i = \mathbf{v}(\mathbf{x}_i, \mathbf{x}_j, \ldots)$ or $\dot{\mathbf{x}}_i = V(\mathbf{x}_i, \mathbf{x}_j, \ldots) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)$

with V the speed function and \mathbf{e}_i the direction

⁷F. Dietrich and G. Köster *Phys. Rev. E* 89:062801 (2014)
 ⁸J. Ondřej et al. In ACM Trans. Graph. 29:123 (2010)
 ⁹Fiorini and Shiller *Int. J. Robot. Res.* 17(7):760 (1998)
 ¹⁰B. Maury and J. Venel *ESAIM-Math. Model. Num.* 45:145 (2011)

Existing first order pedestrian models

First order models : Velocity function

 $\dot{\mathbf{x}}_i = \mathbf{v}(\mathbf{x}_i, \mathbf{x}_j, \ldots)$ or $\dot{\mathbf{x}}_i = V(\mathbf{x}_i, \mathbf{x}_j, \ldots) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)$

with V the speed function and \mathbf{e}_i the direction

- Gradient navigation model with additive neighbour repulsions⁷
- Synthetic-vision-based model based on time-to-interaction and bearing angle ⁸
- Velocity obstacle approach borrowed from robotic⁹
- Maury and Venel mathematical framework and evacuation model¹⁰

⁷F. Dietrich and G. Köster Phys. Rev. E 89:062801 (2014)

⁸J. Ondřej et al. In ACM Trans. Graph. 29:123 (2010)

⁹Fiorini and Shiller Int. J. Robot. Res. 17(7):760 (1998)

¹⁰B. Maury and J. Venel ESAIM-Math. Model. Num. 45:145 (2011)

Gradient navigation model¹¹

First order model with relaxed speed

<

with v_0 the (scalar) desired speed, τ the reaction time and

$$\mathbf{e}_{i} = g\left(g\left(\mathbf{e}_{0}\right) + g\left(-\sum_{j} r(s_{i,j}) w_{i,j} \mathbf{e}_{i,j}\right)\right)$$

with \mathbf{e}_0 the desired direction, $w_{i,j}$ a vision angle weight, r the repulsion, and g scaling function such that $||g(\mathbf{x})|| \to 0$ and $||g(\mathbf{x})|| \to 1$ as $||\mathbf{x}|| \to 0$ and $||\mathbf{x}|| \to \infty$

¹¹F. Dietrich and G. Köster Phys. Rev. E 89:062801 (2014)

Gradient navigation model¹¹

First order model with relaxed speed

<

with v_0 the (scalar) desired speed, τ the reaction time and

$$\mathbf{e}_{i} = g\left(g\left(\mathbf{e}_{0}\right) + g\left(-\sum_{j} r(s_{i,j}) w_{i,j} \mathbf{e}_{i,j}\right)\right)$$

with \mathbf{e}_0 the desired direction, $w_{i,j}$ a vision angle weight, r the repulsion, and g scaling function such that $||g(\mathbf{x})|| \to 0$ and $||g(\mathbf{x})|| \to 1$ as $||\mathbf{x}|| \to 0$ and $||\mathbf{x}|| \to \infty$

 \rightarrow Additive repulsions with neighbours like force-based models

¹¹F. Dietrich and G. Köster Phys. Rev. E 89:062801 (2014)

Synthetic-vision-based steering model¹²

'Vision based' model depending on :

- Bearing-angle α and its derivative
- Time-to-interaction TTI (time-to-collision)

Velocity function $V(TTI_i) = v_0 (1 - \exp(-0.5 \min_j TTI_{i,j}^2))$ and discrete direction model (turning right, turning left, or going to desired cap) depending on $(\alpha, \dot{\alpha}, TTI)$

Source: See footnote 12

Synthetic-vision-based steering model¹²

'Vision based' model depending on :

- Bearing-angle α and its derivative
- Time-to-interaction TTI (time-to-collision)

Velocity function $V(TTI_i) = v_0(1 - \exp(-0.5 \min_j TTI_{i,j}^2))$ and discrete direction model (turning right, turning left, or going to desired cap) depending on $(\alpha, \dot{\alpha}, TTI)$

 $\rightarrow\,$ Description of complex collective structures avoiding gridlocks

Source: See footnote 12

¹² J. Ondřej et al. In ACM Trans. Graph. 29:123 (2010)

Velocity obstacle model¹⁴

Approach based on velocity obstacle sets VO leading to collisions if the obstacle speeds remain constant

For a desired speed \mathbf{v}_0 , the velocity is

$$\dot{\mathbf{x}}_i = \operatorname*{arg\,min}_{\mathbf{v}
ot \in \cup_j VO_j} ||\mathbf{v} - \mathbf{v}_0||$$

Source: See footnote 14

 13 V.D. Berg et al. In IEEE International Conference on Robotics and Automation 1928 (2008) 14 Fiorini and Shiller *Int. J. Robot. Res.* 17(7):760 (1998)

Velocity obstacle model¹⁴

Approach based on velocity obstacle sets VO leading to collisions if the obstacle speeds remain constant

For a desired speed \mathbf{v}_0 , the velocity is

$$\dot{\mathbf{x}}_i = \operatorname*{arg\,min}_{\mathbf{v}
ot \in \cup_j VO_j} ||\mathbf{v} - \mathbf{v}_0||$$

- $\rightarrow\,$ Collision-free dynamics in discrete time if step smaller than horizon time
- ightarrow Reciprocal velocity obstacle model to avoid oscillation¹³

 $^{^{13}}$ V.D. Berg et al. In IEEE International Conference on Robotics and Automation 1928 (2008) 14 Fiorini and Shiller *Int. J. Robot. Res.* 17(7):760 (1998)

Condition for collision-free dynamics¹⁶

If pedestrians are considered as disc with diameter $\ell,$ the set of collision-free configurations is

$$Q_i = \left\{ \mathbf{x}_i \in \mathbb{R}^2, \ \mathbf{s}_{i,j} \ge \ell \ \forall j \right\}, \quad \forall i$$

The set of collision-free velocities C_{x_i} is

$$C_{\mathbf{x}_i} = \left\{ \mathbf{v} \in \mathbb{R}^4, \ s_{i,j} = \ell \ \Rightarrow \ \mathbf{e}_{i,j} \cdot (\mathbf{v}_i - \mathbf{v}_j) \ge 0 \right\}$$

• If $\mathbf{x}_i(0) \in Q_i$ then \mathbf{x}_i remains in Q_i for the dynamics in $C_{\mathbf{x}_i}^{15}$

¹⁵Invariant set, see Monneau et al. NoDEA 21(4):491 (2014) for similar approach with second order model ¹⁶B. Maury and J. Venel *ESAIM: Proc.* 18:43 (2007)

Condition for collision-free dynamics¹⁶

If pedestrians are considered as disc with diameter $\ell,$ the set of collision-free configurations is

$$Q_i = \left\{ \mathbf{x}_i \in \mathbb{R}^2, \ s_{i,j} \ge \ell \ \forall j \right\}, \quad \forall i$$

The set of collision-free velocities C_{x_i} is

$$C_{\mathbf{x}_{i}} = \left\{ \mathbf{v} \in \mathbb{R}^{4}, \ s_{i,j} = \ell \ \Rightarrow \ \mathbf{e}_{i,j} \cdot (\mathbf{v}_{i} - \mathbf{v}_{j}) \geq 0 \right\}$$

If x_i(0) ∈ Q_i then x_i remains in Q_i for the dynamics in C_{xi}¹⁵

Evacuation model by projection of desired speed $\dot{\mathbf{x}}_i = \arg \min_{C_{\mathbf{x}_i}} ||\mathbf{v} - \mathbf{v}_0||$

 \rightarrow Pedestrians go as fast as possible (evacuation)

¹⁵Invariant set, see Monneau et al. NoDEA 21(4):491 (2014) for similar approach with second order model ¹⁶B. Maury and J. Venel *ESAIM: Proc.* 18:43 (2007)

Literature summary

Member of the Helmholtz-Association

Literature summary

- First order models are by construction collision-free if $\mathbf{e}_{i,j} \cdot \mathbf{v}_i \ge 0$ and $\mathbf{e}_{j,i} \cdot \mathbf{v}_j \ge 0$ when $s_{i,j} = \ell$
- Additive forms are easily computable
- Models based on neighbour instantaneous speed can give oscillations

Literature summary

- First order models are by construction collision-free if $\mathbf{e}_{i,j} \cdot \mathbf{v}_i \ge 0$ and $\mathbf{e}_{j,i} \cdot \mathbf{v}_j \ge 0$ when $s_{i,j} = \ell$
- Additive forms are easily computable
- Models based on neighbour instantaneous speed can give oscillations
- $\rightarrow\,$ Development of a minimal collision-free model with additive repulsion based on the spacing distances with the neighbours

Optimal velocity (OV) models

Models based on the relation between the speed and the spacing (OV function) \rightarrow Initially introduce in traffic flow¹⁷; Also used for pedestrian modelling¹⁸

Optimal velocity (OV) models

Models based on the relation between the speed and the spacing (OV function) \rightarrow Initially introduce in traffic flow¹⁷; Also used for pedestrian modelling¹⁸ Easy control of fundamental diagram (cf. homogeneous configuration)

¹⁷M. Bando et al. *Phys. Rev. E* 51, 1035 (1995)
 ¹⁸A. Nakayama et al. *Phys. Rev. E* 71, 036121 (2005)

Minimum distance in front

The pedestrians in front are the set

Minimum distance in front

The pedestrians in front are the set $J_i = \{j, \mathbf{e}_i \cdot \mathbf{e}_{i,j} \leq 0 \text{ and } |\mathbf{e}_i^{\perp} \cdot \mathbf{e}_{i,j}| \leq \ell/s_{i,j}\}$

Minimum distance in front

The pedestrians in front are the set $J_i = \{j, \mathbf{e}_i \cdot \mathbf{e}_{i,j} \leq 0 \text{ and } |\mathbf{e}_i^{\perp} \cdot \mathbf{e}_{i,j}| \leq \ell/s_{i,j}\}$ \rightarrow The minimum distance in front is $s_i = \min_{j \in J_i} s_{i,j}$

Collision-free OV model in two dimensions

Speed and direction models :

$$\dot{\mathbf{x}}_i = V(\mathbf{x}_i, \mathbf{x}_j, \dots) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \dots)$$

Collision-free OV model in two dimensions

Speed and direction models : $\dot{\mathbf{x}}_i = V(\mathbf{x}_i, \mathbf{x}_j, ...) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, ...)$

• If $\mathcal{V}(.) \ge 0$ and $\mathcal{V}(s) = 0$ for all $s \le \ell$, the OV model based on minimum distance in front

$$\dot{\mathbf{x}}_i = \mathcal{V}(\mathbf{s}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)$$

is collision-free for any direction model $\mathbf{e}_i(\cdot)$

Proof For $s_{i,j} = \ell$, if $\mathbf{e}_i \cdot \mathbf{e}_{i,j} \leq 0$ then $j \in J_i$, i.e. $s_i \leq s_{i,j} = \ell$ and $\mathcal{V}(s_i) = 0$, if $\mathbf{e}_i \cdot \mathbf{e}_{i,j} \geq 0$, then $\mathcal{V}(s_i) \geq 0$ since $\mathcal{V}(\cdot) \geq 0$; Therefore $\mathbf{v}_i \cdot \mathbf{e}_{i,j} = \mathcal{V}(s_i) \times \mathbf{e}_i \cdot \mathbf{e}_{i,j} \geq 0$ (similar proof for j)

Collision-free OV model in two dimensions

Speed and direction models : $\dot{\mathbf{x}}_i = V(\mathbf{x}_i, \mathbf{x}_j, ...) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, ...)$

• If $\mathcal{V}(.) \ge 0$ and $\mathcal{V}(s) = 0$ for all $s \le \ell$, the OV model based on minimum distance in front

$$\dot{\mathbf{x}}_i = \mathcal{V}(\mathbf{s}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)) \times \mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)$$

is collision-free for any direction model $\mathbf{e}_i(\cdot)$

Proof For $s_{i,j} = \ell$, if $\mathbf{e}_i \cdot \mathbf{e}_{i,j} \leq 0$ then $j \in J_i$, i.e. $s_i \leq s_{i,j} = \ell$ and $\mathcal{V}(s_i) = 0$, if $\mathbf{e}_i \cdot \mathbf{e}_{i,j} \geq 0$, then $\mathcal{V}(s_i) \geq 0$ since $\mathcal{V}(\cdot) \geq 0$; Therefore $\mathbf{v}_i \cdot \mathbf{e}_{i,j} = \mathcal{V}(s_i) \times \mathbf{e}_i \cdot \mathbf{e}_{i,j} \geq 0$ (similar proof for j)

 \rightarrow Direction model $\mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots)$ to define

Direction model

Direction model

Exponential additive form (Gradient navigation model) :

$$\mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots) = \frac{1}{N} \left(\mathbf{e}_0 + \sum_j r(\mathbf{s}_{i,j}) \, \mathbf{e}_{i,j} \right)$$

with N a normalisation constant and $r(s) = a \exp\left((\ell-s)/D
ight)$ the repulsion

Direction model

Exponential additive form (Gradient navigation model) :

$$\mathbf{e}_i(\mathbf{x}_i, \mathbf{x}_j, \ldots) = \frac{1}{N} \left(\mathbf{e}_0 + \sum_j r(s_{i,j}) \mathbf{e}_{i,j} \right)$$

with N a normalisation constant and $r(s) = a \exp\left((\ell-s)/D
ight)$ the repulsion

Two parameters :

- Repulsion rate *a* > 0
- Repulsion distance D > 0

Overview

- 1. Existing first order pedestrian models
- 2. Collision-free property
- 3. OV model
- 4. Model for the direction
- 5. Simulation results
- 6. Conclusions and working perspectives

Simulation of the model

Member of the Helmholtz-Association

Simulation of the model

5 parameters: Ped. size $\ell = 0.3 m$; Desired speed $v_0 = 1.2 m/s$; Time gap T = 1 sRepulsion rate a = 5; Repulsion distance D = 0.1 m

Simulation using Euler explicit scheme with time step dt > 0

For each time step t in $dt \mathbb{N}$

For each pedestrian i

$$\begin{vmatrix} \mathbf{e}_i(t) &= \frac{1}{N} \left(\mathbf{e}_0(x_i(t), t) + \sum_j r(s_{i,j}(t)) \mathbf{e}_{i,j}(t) \right) \\ J_i(t) &= \left\{ j, \ \mathbf{e}_i(t) \cdot \mathbf{e}_{i,j}(t) \le 0 \text{ and } |\mathbf{e}_i^{\perp}(t) \cdot \mathbf{e}_{i,j}(t)| \le \ell/s_{i,j}(t) \right\} \\ s_i(t) &= \min_{j \in J_i} s_{i,j}(t) \\ \mathbf{x}_i(t+dt) &= \mathbf{x}_i(t) + dt \times \mathcal{V}(s_i(t)) \mathbf{e}_i(t) \end{aligned}$$

Collision avoidance

Non-overlapping

Linear flow in bottlenecks

Linear flow in bottlenecks

Bottleneck width (m)

Lane formation

Up to $4 \text{ ped}/m^2$ for $\ell = 0.4 \text{ m}$ and $7 \text{ ped}/m^2$ for $\ell = 0.3 \text{ m}$

Freezing by heating effect

Adding of a noise

Intermittent bottleneck flows

Overview

- 1. Existing first order pedestrian models
- 2. Collision-free property
- 3. OV model
- 4. Model for the direction
- 5. Simulation results
- 6. Conclusions and working perspectives

Summary

Member of the Helmholtz-Association

Summary

Conclusions

- Collision-free first order pedestrian model in two dimensions
- 5 parameters: Pedestrian size; Desired speed; Time gap (OV function) Repulsion rate and distance (Direction model)
- Catching of expected properties and self-organized phenomena

Summary

Conclusions

- Collision-free first order pedestrian model in two dimensions
- 5 parameters: Pedestrian size; Desired speed; Time gap (OV function) Repulsion rate and distance (Direction model)
- Catching of expected properties and self-organized phenomena

Limitations / Outlooks

- No anticipation (no speed difference) / No reaction time / No vision effect
- No stop-and-go phenomena for congested flow (first order)
- Gridlock for narrow bottlenecks (circle shape)