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Motivations

Inertial force-based (Newtonian) pedestrian models described many features of
crowd dynamics, yet inertia potentially induces

Local oscillations (cf. harmonic oscillator / 2nd order equation)

Collision (overlapping) and uncontrolled motion backward

Restricted parameter values or adding of parameters and speed difference terms
to get realistic dynamics / Difficult calibration

Numerical difficulties resulting in small time steps and high computational
complexity

→ Development of collision-free first order models

A. Tordeux First order pedestrian models Introduction Slide 2
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Notations

`

ei,j

xi

xj

vi

θi

xi Position of pedestrian i ` Pedestrian size
vi Speed of pedestrian i ei,j Unit vector from xj to xi
θi Direction of pedestrian i ei = (cos θi , sin θi ) si,j = ||xi − xj ||
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Existing first order pedestrian models

First order models : Velocity function

ẋi = v(xi , xj , . . .) or ẋi = V (xi , xj , . . .)× ei (xi , xj , . . .)

with V the speed function and ei the direction

Gradient navigation model with additive neighbour repulsions7

Synthetic-vision-based model based on time-to-interaction and bearing angle 8

Velocity obstacle approach borrowed from robotic9

Maury and Venel mathematical framework and evacuation model10

7F. Dietrich and G. Köster Phys. Rev. E 89:062801 (2014)
8J. Onďrej et al. In ACM Trans. Graph. 29:123 (2010)
9Fiorini and Shiller Int. J. Robot. Res. 17(7):760 (1998)

10B. Maury and J. Venel ESAIM-Math. Model. Num. 45:145 (2011)
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Gradient navigation model11

First order model with relaxed speed{
ẋi = ωi ei (xi , xj , . . .)

ω̇i = 1
τ

(v0||ei (xi , xj , . . .)|| − ωi )

with v0 the (scalar) desired speed, τ the reaction time and

ei = g
(
g (e0) + g

(
−
∑

j r(si,j ) wi,j ei,j
))

with e0 the desired direction, wi,j a vision angle weight, r the repulsion, and g
scaling function such that ||g(x)||→ 0 and ||g(x)||→ 1 as ||x||→ 0 and ||x||→∞

→ Additive repulsions with neighbours like force-based models

11F. Dietrich and G. Köster Phys. Rev. E 89:062801 (2014)
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Synthetic-vision-based steering model12

‘Vision based’ model depending on :

Bearing-angle α and its derivative

Time-to-interaction TTI (time-to-collision)

Source: See footnote 12

Velocity function V (TTIi ) = v0

(
1− exp

(
− 0.5 minj TTI

2
i,j

))
and discrete direction

model (turning right, turning left, or going to desired cap) depending on (α, α̇,TTI )

→ Description of complex collective structures avoiding gridlocks

12J. Onďrej et al. In ACM Trans. Graph. 29:123 (2010)
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Velocity obstacle model14

Approach based on velocity obstacle sets VO
leading to collisions if the obstacle speeds re-
main constant

For a desired speed v0, the velocity is

ẋi = arg min
v 6∈∪jVOj

||v − v0||

Source: See footnote 14

→ Collision-free dynamics in discrete time if step smaller than horizon time

→ Reciprocal velocity obstacle model to avoid oscillation13

13V.D. Berg et al. In IEEE International Conference on Robotics and Automation 1928 (2008)
14Fiorini and Shiller Int. J. Robot. Res. 17(7):760 (1998)
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Condition for collision-free dynamics16

If pedestrians are considered as disc with diameter `, the set of collision-free
configurations is

Qi =
{

xi ∈ R2, si,j ≥ ` ∀j
}
, ∀i

The set of collision-free velocities Cxi is

Cxi =
{

v ∈ R4, si,j = ` ⇒ ei,j · (vi − vj ) ≥ 0
}

If xi (0) ∈ Qi then xi remains in Qi for the dynamics in Cxi
15

Evacuation model by projection of desired speed ẋi = arg minCxi
||v − v0||

→ Pedestrians go as fast as possible (evacuation)

15Invariant set, see Monneau et al. NoDEA 21(4):491 (2014) for similar approach with second order model
16B. Maury and J. Venel ESAIM: Proc. 18:43 (2007)
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Literature summary

First order models are by construction collision-free if ei,j · vi ≥ 0 and ej,i · vj ≥ 0
when si,j = `

Additive forms are easily computable

Models based on neighbour instantaneous speed can give oscillations

→ Development of a minimal collision-free model with additive repulsion based on
the spacing distances with the neighbours

A. Tordeux First order pedestrian models Literature summary Slide 11
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Optimal velocity (OV) models

Models based on the relation between the speed and the spacing (OV function)

→ Initially introduce in traffic flow17; Also used for pedestrian modelling18

Easy control of fundamental diagram (cf. homogeneous configuration)

OV function

Spacing (m)

S
p

ee
d

(m
/
s)

0 ` 0.7 `+Tv0

0
0

.6
v 0

v0 = 1.2m/s

T = 1 s

` = 0.3m

Fundamental diagram

Density (ped/m)

F
lo

w
(p
ed
/
s)

0.0 1.0 2.0 3.0

0
0

.5

v0 −`/T

17M. Bando et al. Phys. Rev. E 51, 1035 (1995)
18A. Nakayama et al. Phys. Rev. E 71, 036121 (2005)
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Minimum distance in front

`

ei,j

ei,k

ei

xi

xj

xk

The pedestrians in front are the set

A. Tordeux First order pedestrian models Collision-free OV model Slide 13
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Minimum distance in front

`

ei,j

ei,k

ei

xi

xj

xk

The pedestrians in front are the set Ji =
{
j , ei · ei,j ≤ 0 and |e⊥i · ei,j | ≤ `/si,j

}
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Minimum distance in front

`

ei,k

ei

xi

xj

xk
si

The pedestrians in front are the set Ji =
{
j , ei · ei,j ≤ 0 and |e⊥i · ei,j | ≤ `/si,j

}
→ The minimum distance in front is si = minj∈Ji si,j
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Collision-free OV model in two dimensions

Speed and direction models : ẋi = V
(
xi , xj , . . .

)
× ei (xi , xj , . . .)

If V(.) ≥ 0 and V(s) = 0 for all s ≤ `, the OV model based on minimum
distance in front

ẋi = V
(
si (xi , xj , . . .)

)
× ei (xi , xj , . . .)

is collision-free for any direction model ei (·)

Proof For si,j = `, if ei · ei,j ≤ 0 then j ∈ Ji , i.e. si ≤ si,j = ` and V(si ) = 0, if ei · ei,j ≥ 0,

then V(si ) ≥ 0 since V(·) ≥ 0; Therefore vi · ei,j = V(si )× ei · ei,j ≥ 0 (similar proof for j)

→ Direction model ei (xi , xj , . . .) to define

A. Tordeux First order pedestrian models Collision-free OV model Slide 16
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ẋi = V
(
si (xi , xj , . . .)

)
× ei (xi , xj , . . .)

is collision-free for any direction model ei (·)

Proof For si,j = `, if ei · ei,j ≤ 0 then j ∈ Ji , i.e. si ≤ si,j = ` and V(si ) = 0, if ei · ei,j ≥ 0,

then V(si ) ≥ 0 since V(·) ≥ 0; Therefore vi · ei,j = V(si )× ei · ei,j ≥ 0 (similar proof for j)

→ Direction model ei (xi , xj , . . .) to define

A. Tordeux First order pedestrian models Collision-free OV model Slide 16



M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Direction model

Exponential additive form (Gradient navigation model) :

ei (xi , xj , . . .) = 1
N

(
e0 +

∑
j r(si,j ) ei,j

)
with N a normalisation constant and r(s) = a exp

(
(`− s)/D

)
the repulsion

Two parameters :

Repulsion rate a > 0

Repulsion distance D > 0

Spacing s (m)

r(
s)

0
2

.5
a

` 0.6 0.9 1.2

a = 5

D = 0.1m

A. Tordeux First order pedestrian models Direction model Slide 17
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Overview

1. Existing first order pedestrian models

2. Collision-free property

3. OV model

4. Model for the direction

5. Simulation results

6. Conclusions and working perspectives
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Simulation of the model

5 parameters: Ped. size ` = 0.3m; Desired speed v0 = 1.2m/s; Time gap T = 1 s
Repulsion rate a = 5; Repulsion distance D = 0.1m

Simulation using Euler explicit scheme with time step dt > 0

For each time step t in dt N
For each pedestrian i∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

ei (t) = 1
N

(
e0(xi (t), t) +

∑
j r(si,j (t)) ei,j (t)

)
Ji (t) =

{
j , ei (t) · ei,j (t) ≤ 0 and |e⊥i (t) · ei,j (t)| ≤ `/si,j (t)

}
si (t) = minj∈Ji si,j (t)

xi (t + dt) = xi (t) + dt × V(si (t)) ei (t)

A. Tordeux First order pedestrian models Simulation results Slide 19
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Lane formation
Up to 4 ped/m2 for ` = 0.4 m and 7 ped/m2 for ` = 0.3 m
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Summary

Conclusions

Collision-free first order pedestrian model in two dimensions

5 parameters: Pedestrian size; Desired speed; Time gap (OV function)

Repulsion rate and distance (Direction model)

Catching of expected properties and self-organized phenomena

Limitations / Outlooks

No anticipation (no speed difference) / No reaction time / No vision effect

No stop-and-go phenomena for congested flow (first order)

Gridlock for narrow bottlenecks (circle shape)
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