

Stationary distribution of CUSUM with autoregressive process

March 20, 2015 | Antoine Tordeux² | Forschungszentrum Jülich, Germany

²a.tordeux@fz-juelich.de

CUSUM algorithm

We denote S(X) the CUSUM statistic for the time series X

• In the CUSUM algorithm³, a transition for X is detected if

 $S(X) > \theta(\gamma)$

with $\theta(\gamma)$ the γ -quantile of S when X is in 'normal' situation ($\gamma \in]0,1[$)

- $\theta(\gamma)$ can be obtained :
 - Empirically if the data in normal situation are big enough
 - By simulation of X (and S) to approximate the distribution of S
 - Analytically by using mathematical tools of stochastic processes

³E.S. Page (1954) Biometrika 41:100

CUSUM with autoregressive process

• We assume that X in 'normal' situation is the autoregressive process

$$\begin{array}{rcl} X(0) & = & Z(0) \\ X(n) & = & c \, X(n-1) + \sqrt{1-c^2} \, Z(n), & n \geq 1 \end{array} \tag{1}$$

with n the (discrete) time and $(Z(n), n \ge 0)$ independent normal random variables

• The (modified) CUSUM statistic is

$$S(0) = 0$$

$$S(n) = \min \{L, \max\{0, S(n-1) + g(X(n))\}\}, \quad n \ge 1$$
(2)

with

$$g(X(n)) = \begin{cases} 1 & \text{if } |X(n)| > q(\alpha) \\ -1 & \text{otherwise} \end{cases}$$
(3)

q(lpha) being the lpha-quantile of the Gaussian distribution ($lpha\in$]1/2,1[)

Stationary distribution

The couple (X(n), S(n)) is a Markov chain with stationary distribution $\mu(x, s) dx$ $(x \in \mathbb{R}, 0 \le s \le L)$ such that (global balance equation) :

If 0 < s < L and $|x| > q(\alpha)$: $\mu(x, s) = \int \mu(y, s - 1) g(y, x) dy$ If 0 < s < L and $|x| \le q(\alpha)$: $\mu(x, s) = \int \mu(y, s + 1) g(y, x) dy$ If $|x| > q(\alpha)$: $\mu(x, L) = \int (\mu(y, L - 1) + \mu(y, L)) g(y, x) dy$ $\mu(x, 0) = 0$ If $|x| \le q(\alpha)$: $\mu(x, 0) = \int (\mu(y, 1) + \mu(y, 0)) g(y, x) dy$ $\mu(x, L) = 0$ (4)

with
$$g(y, x) = \frac{1}{\sqrt{2\pi(1-c^2)}} \exp\left(-\frac{(x-cy)^2}{2(1-c^2)}\right)$$

The stationary distribution of S is $\mathbb{P}(S = s) = \int \mu(x, s) \, dx$ for all $0 \le s \le L$

• Unfortunately, this equation doesn't seem to have explicit solution for $\mu(\cdot, \cdot)$

Numerical approximation

The system (4) is approximated by using the numerical scheme :

$$\mu(y,s) = \int \mu(x,s')g(x,y) \, dx \quad \rightsquigarrow \quad a_{i,s} = \sum_k a_{i,s'} b_{i,k}$$

with $a_{i,s} = \mu(x_i,s), \quad b_{i,k} = \delta_K g(x_k,x_i), \quad x_i = -x' + \delta_K i, \quad \delta_K = 2x'/K$ (5)

• The numerical approximation yields in the linear equation $M\mathbf{x} = 0$ where $\mathbf{x} = {}^{T}(a_{0,0}, a_{1,0}, \dots a_{K,0}, a_{0,1}, \dots a_{K,L})$ and M = B - Id with

$$B = \begin{bmatrix} B_2 & B_2 & & \\ B_1 & B_2 & & \\ & & B_1 & B_2 \\ & & & B_1 & B_1 \end{bmatrix} \quad B_1 = \begin{bmatrix} b_{0,0} \dots & b_{0,K} \\ b_{i_a,0} \dots & b_{i_a,K} \\ b_{i_b,0} \dots & b_{i_b,K} \\ b_{K,0} \dots & b_{K,K} \end{bmatrix} \quad B_2 = \begin{bmatrix} b_{i_a+1,0} \dots & b_{i_a+1,K} \\ b_{i_b-1,0} \dots & b_{i_b-1,K} \\ b_{i_b-1,0} \dots & b_{i_b-1,K} \end{bmatrix}$$

 $i_a = rg\max_i \{x_i < -q(\alpha)\}$ and $i_b = rg\min_i \{x_i > q(\alpha)\}$

 \rightsquigarrow Approximation of the stationary distribution by solving a linear system with (K+1)(L+1) equations

 $L = 10 \quad \alpha = 0.9 \quad c = 0.9$

 $L = 10 \quad \alpha = 0.9 \quad c = 0.9$

L = 10 $\alpha = 0.9$ c = 0.9

Member of the Helmholtz-Association

L = 10 $\alpha = 0.9$ c = 0.9 $\gamma = 0.9$

L = 100 $\alpha = 0.9$ c = 0.9 $\gamma = 0.9$

ember of the Helmholtz-Associa

 $L = 100 \quad \alpha = 0.9 \quad c = 0.9 \quad \gamma = 0.9$

imber of the Helmholtz-Associa

Conclusion

Threshold θ depends on *c*, α , *L* and γ

• Stationary distribution of the Markovian couple (X, S) – and marginal distribution of S – is not explicit

- \rightarrow Numerical approximation with discretisation step K > 1
- \rightarrow Computational effort in $O((KL)^3)$ Optimization leads to $O(K^3L)$
- Simulation of X (and S) with random number generator until time N
- ightarrow Random estimation : Realization of m>1 runs to control the precision
- \rightarrow Computational effort in O(mN)
- **CCL**: No explicit formula for θ / Numerical calculus faster than the simulations Parameter phase to propose explicit relations

Parameter phase for c

 $L = 100 \quad \alpha = 0.99 \quad \gamma = 0.99$

Member of the Helmholtz-Associa