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“Models for Understanding
versus Models for Prediction”

GILBERT SAPORTA, COMPSTAT 2008, pp. 315-322

» Opposition between two modelling approaches in statistic (and elsewhere):

1. Model to understand: Parsimonious representation of data to identify underlying
mechanisms and parameters which may have produced it.

2. Model to predict: Models whose complexity depends on the quantity and structure of
the data that are assessed by its performances to predict new observations.

> Author: GILBERT SAPORTA
University professor emeritus at the CNAM
Research field: Applied Statistic, Statistical Computing

Author of the French best-seller in statistic:
Probabilités, analyse des données et statistique, Technip, 1990
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Models for understanding

» Models for understanding: Identification of underlying mechanisms

Insights in the nature of the phenomenon of interest

N
Few parameters that should be interpretable and that can be estimated using data

N
— Parsimony principle
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Models for understanding

» Models for understanding: Identification of underlying mechanisms

— Insights in the nature of the phenomenon of interest
— Few parameters that should be interpretable and that can be estimated using data

— Parsimony principle

» Occam'’s razor attributed to WILLIAM OF OCKHAM (1287-1347)

“Among competing hypotheses, the one with the
fewest assumptions should be selected"

» PTOLEMY (90-168) “We consider it a good principle to explain the phenomena by the
simplest hypothesis possible”

» Isaac NEWTON (1642-1727) “We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances”

» ALBERT EINSTEIN (1879-1955) “Everything should be made as simple as possible, but not
simpler”
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Models for understanding

> Model: y="1f(x;0)+¢
e y: Variables to explain/ predict Dependent variables, regressand, output variable, ...
e x: Explanatory variables Independent variables, regressor, input variable, ...
e O: Parameters of the model Constants to calibrate and interpret
e c: Unexplained part Noise (residual) with amplitude o
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Models for understanding

> Model: y="1f(x;0)+¢
e y: Variables to explain/predict Dependent variables, regressand, output variable, ...
e x: Explanatory variables Independent variables, regressor, input variable, ...
e 0 : Parameters of the model Constants to calibrate and interpret
e c: Unexplained part Noise (residual) with amplitude o

» Examples of parametric models: Linear and nonlinear regression model, PLS regression
(quantitative analysis); Logistic model, (linear) discriminant, posterior distribution
(qualitative analysis, classification)

» Parameter calibration: Least-squares, maximum-likelihood, Bayesian network + Confidence
(credible) interval

» Model choice: Information criteria (Likelihood-ratio; Akaike, AIC; Bayesian, BIC, Bayes-
factor) + Statistical test
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Models for understanding: Limit

> Difficulties with Big data Large dimension and observation number

— Concentration of the likelihood: Information criteria AIC = 72ln(Ln(é)) + 2k or BIC
= —21In (Ly()) + In(n)k tend to select models with minimal number of parameters

— Everything is significant (C/ = [ £ q6/+/n| = {Ai}, cor = 0.01 significant, ... )
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Models for understanding: Limit

> Difficulties with Big data Large dimension and observation number

— Concentration of the likelihood: Information criteria AIC = —2/n(L, 0)) + 2k or BIC
= —21In (L,(d)) + In(n)k tend to select models with minimal number of parameters

— Everything is significant (C/ = [ £ q6/+/n| = {Ai}, cor = 0.01 significant, ... )

» Difficulties with complex multidimensional nonlinear relationship  Complex system

— Correlation-based model : Linear relationship / Least squares: for linear models

— Modelling-bias — Limited modelling complexity

GEORGE BOX (1919-2013):  “Essentially, all models are wrong,
but some are useful"
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Models for understanding: lllustration




Models for understanding: Illustration Il

CURVE-FITTING METHODS
PND THE MESSAGES THEY SEND

T,
"HEY, T DDA "L UANTED A CURVED "LOOK, IT'5 "LOOK, IT'5 GROVING
REGRESSION. LINE, 50 T MADE ONE TAPERING OFF"" UNCONTROLLABLY™
UITH MATH?
I NEED TO CONNECT THESE  "USTEN, SCENCE IS HARD. "L HAVE. A THEORY, T QLICKED ‘SMOOTH
O UNES, BUT MY FIRST IDEA  BUT IM A SERIOUS AND THIS 15 THE ONLY LINES IN EXCELY
DIDN'T HAVE ENOUGH MATH:  PERSON DOING MY BEST." DATA T COULD FIND.
h nd &'

Source: 2021/01/07/xkcd-curve-fitting-methods-and-th
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"T1M SOPHISTICATED, NOT
LIKE THOSE BUMBLING
POLYNOMIAL PEOPLE™

"I HAD AN IDEA FOR HOU
To CLEAN UP THE DATA.
\WHAT DO YOU THINK?"

“IM MAKING A
SCATTER PLOT BUT
T DONT UANT TO°

*AS YOU CPN SEE, THIS
MODEL SMOOTHLY FITS
THE- WAl MO MO DONT
EXTEND IT ARARARY"
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https://statmodeling.stat.columbia.edu/2021/01/07/xkcd-curve-fitting-methods-and-the-messages-they-send/
https://statmodeling.stat.columbia.edu/2021/01/07/xkcd-curve-fitting-methods-and-the-messages-they-send/
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Models for prediction

» Origins: Knowledge discovery in data bases G. PIATETSKY-SHAPIRO, 1980
— A model is merely an algorithm coming more from the data than from a theory
—  No “Modelling bias”
— Algorithm complexity itself (hyperparameter) depends on the data structure and size

— Focus on prediction ability, i.e. capacity of making good predictions for new data
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Models for prediction

» Origins: Knowledge discovery in data bases G. PIATETSKY-SHAPIRO, 1980

— A model is merely an algorithm coming more from the data than from a theory
—  No “Modelling bias”

— Algorithm complexity itself (hyperparameter) depends on the data structure and size

— Focus on prediction ability, i.e. capacity of making good predictions for new data

» Models for prediction: “Black-box” models VLADIMIR VAPNIK, 2006
— Same formulation y = fiy(x; 0) + € but here f is a non-linear function depending on
hyperparameters H and the dimensions of x and 6 are high

— Exemples of algorithms for prediction: Neural network, support-vector-machine,
random forest — Hyperparameters: number of neurones, support vectors, decision trees.

— Supervised learning: Training minimising a loss function (squared error, cross-entropy)

— Black-box because the coefficients are too numerous to be interpreted and because the
algorithm structure and complexity depend on the data

RDFG
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Can we open the black box of Al?

DAVIDE CASTELVECCHI, Nature 538, 20-23, 2016
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http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731
http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731
http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

Models for prediction: Theory

» Risk minimization

— L is a loss function, the risk R = E(L) is the expectation of the loss
— Empirical risk:  Remp = £ 3, L(yi, f(x:; 0))
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Models for prediction: Theory

» Risk minimization

— Lis a loss function, the risk R = E(L) is the expectation of the loss
— Empirical risk:  Remp = £ 3, L(yi, f(x:; 0))

> Vapnik's inequality: R < Remp + 4/ fn2n/A)41)—In(ar/4)

with h the Vapnik—Chervonenkis dimension (i.e. the cardinality of the largest set of points
that the algorithm can shatter — prediction ability)
— No distributional assumptions are necessary (only h << n)

— Formally Risk shared between empirical risk and a function depending on the ratio
h/n (ratio h/n of interest)

— Minimisation of the empirical risk by increasing the model complexity h

— Increase of the complexity and prediction ability h as n increases

RDFG
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Models for prediction: Practice

» The VC-dimension is difficult to evaluate in practice
» Setting the algorithm complexity: Trade-off between quality-of-fit and training robustness

— Too simple algorithm: precise training but weak prediction
— Too complex: imprecise training, good prediction for training but weak for new data

— Bias-Variance-Dilemma (underfitting VS overfitting)
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Models for prediction: Practice

» The VC-dimension is difficult to evaluate in practice
» Setting the algorithm complexity: Trade-off between quality-of-fit and training robustness

— Too simple algorithm: precise training but weak prediction
— Too complex: imprecise training, good prediction for training but weak for new data

— Bias-Variance-Dilemma (underfitting VS overfitting)

» Empirical analysis of the algorithm complexity

— Cross-validation: (random) partition of the data in training and testing set
Training set used to fit the models

Validation set use to estimate prediction error

— Bootstrap aggregating: Repeating the operation to evaluate the precision of estimation

Algorithm complexity selection by minimising the mean testing error (cross-validation)

— Evaluation of the estimation precision using the empirical bootstrap distribution

ROUFG
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Bias-Variance-Dilemma

High Bias High Variance
Low Variance Low Bias

1. Source: elitedatascience.com/bias-variance-tradeoff ('
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https://elitedatascience.com/bias-variance-tradeoff

Cross-validation (underfitting VS overfitting)

Symptoms.

Regression
illustration

Classification
illustration

Deep learning
illustration

Possible
remedies

Underfitting

« High training error

- Training error close 10 test
error

+ High bias

Error

Validation

Training

Error

Just right

- Training error slightly lower
than test error

Overfitting

« Very low training error

- Training error much lower
than test error

- High variance

Error

Validation

Epochs
+ Complexify model

+ Add more features

« Train longer

2. Source: kaggle.com/getting-started/166897 (5!

Epochs

Epochs

+ Perform regularization
+ Get more data


https://www.kaggle.com/getting-started/166897

Bootstrap

IF AT FIRST
YOU DON’T

SUCCEED

TRY TWO MORE TIMES
SO THAT YOUR
Y FAILURE 4
?'4 =S ~ ‘)\)
8y TISTICH, e
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Models for understanding: lllustration




Models for prediction: lllustration
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Models for prediction and machine learning: Applications in engineering

Image
Structure Classification
Discovery Feature ° Customer
@ Elicitation Fraud @ Retention

Meaningful Detection

compression

D\MENslcc;:gtLv CLASSIFICATION @ Diagnostics
Big data

Visualisation
® Forecasting

SUPERVISED

Recommended UNSUPERVISED o
Systems LEARNING LEARNING ® Predictions
CLUSTERING
Targett.ed MACHINE ® Process
Marketing Optimization
LEARNING A
[ ]
Customer New Insights
Segmentation
REINFORCEMENT
Real-Time Decisions ® ® Robot Navigation
Game Al ® @ Skill Aquisition
L]
Learning Tasks 4

4. Source: Towards data science
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Applications: Autonomous vehicles

» Driving situations are extremely varied and the driving process is poorly
structured

» Defining an understandable model giving satisfying responses in any situation is
not possible (especially in urban/dense situations or for mixed flow)

—  Autonomous driving is a typical application field for machine learning
techniques and the ‘models for prediction’

RDFG
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https://en.wikipedia.org/wiki/VisLab_Intercontinental_Autonomous_Challenge
https://www.applus.com/global/en/news/the-grand-cooperative-driving-challenge-

Applications: Autonomous vehicles

» Driving situations are extremely varied and the driving process is poorly
structured

» Defining an understandable model giving satisfying responses in any situation is
not possible (especially in urban/dense situations or for mixed flow)

—  Autonomous driving is a typical application field for machine learning
techniques and the ‘models for prediction’

» The perception and motion planning of autonomous vehicles by machine learning
actively developed since the 1990's

— Projects: NAVLAB (1984), Eureka Prometheus (1985), NAHSC (1997), Cybercar
(1997), Darpa Challenges (2007), Google Car (since 2010), Tesla (since 2014),
PROUD (2015), DELPHI (2016), VIAC Challenge, GCDC, ...
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https://en.wikipedia.org/wiki/VisLab_Intercontinental_Autonomous_Challenge
https://www.applus.com/global/en/news/the-grand-cooperative-driving-challenge-

Autonomous vehicles: Example (1)

Premise work (Autonomous steering — Stanford University, 1992)

“Simple” Neural networks
based on video analysis
Experiment:

2mn learning (120 obs only!)

—  Autonomous steering
in curved roads

| RDFGI
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https://www.coursera.org/learn/machine-learning/lecture/zYS8T/autonomous-driving
https://www.coursera.org/learn/machine-learning/lecture/zYS8T/autonomous-driving

Autonomous vehicles: Example (2)

Recent work (End-to-End Deep Learning for Self-Driving Cars, Bojarski et al., 2016)

Convolutional neural networks
based on HD video analysis

DAVE-2 Project (DARPA Challenge)

Neural network: 27 M connections
and up to 250000 parameters!

Recorded
steeting
wheel angs

Desired steering command

Network
computed
steering
commmand

Random shift
and rotation

Right camera
Back propagation
weight adjustment

Training phase

Bergische Universitat Wuppertal

Output: vehicle contral

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional

feature map
64@1x18

c
feature map
64@3x20

,.
feature map
48@5x22

5x5 kemel
Convolutional
feature map
36@ 14347
Bxskemel
feature map
24@31x98

__7/5x5 kemel
=~

input planes
3@66x200

Input planes
3@66x200

CNN architecture



https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/

Revolution of the data science?

» Data-based approaches and machine learning techniques have clearly transformed the
engineering sciences over the last 20 years

» Keywords: Data Science, Internet of Things, Big Data, Industry 4.0, Sensor 4.0, etc.
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Revolution of the data science?

» Data-based approaches and machine learning techniques have clearly transformed the
engineering sciences over the last 20 years

» Keywords: Data Science, Internet of Things, Big Data, Industry 4.0, Sensor 4.0, etc.

» Revolution in the science?

— A. Ourmazd: Science in the age of machine learning. Nat. Rev. Phys. 2(7):342, 2020.

— A. W. Senior et al.: Improved protein structure prediction using potentials from deep
learning. Nature 577(7792): 706, 2020.

— F. Cichos et al.: Machine learning for active matter. Nat. Mach. Intell. 2(2):94, 2020.

— A. Esteva et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639):115, 2017.

— K. T. Schiitt et al.: Quantum-chemical insights from deep tensor neural networks.
Nature Communications 8(1):1, 2017.

— K. T. Butler et al.: Machine learning for molecular and materials science. Nature
559(7715):547, 2018.

— K. G. Reyes and B. Maruyama: The machine learning revolution in materials? MRS
Bull. 44(7):530, 2019.
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