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“Models for Understanding
versus Models for Prediction”

Gilbert Saporta, COMPSTAT 2008, pp. 315–322

▶ Opposition between two modelling approaches in statistic (and elsewhere):

1. Model to understand : Parsimonious representation of data to identify underlying
mechanisms and parameters which may have produced it.

2. Model to predict : Models whose complexity depends on the quantity and structure of
the data that are assessed by its performances to predict new observations.

▶ Author : Gilbert Saporta
University professor emeritus at the CNAM

Research field: Applied Statistic, Statistical Computing

Author of the French best-seller in statistic:
Probabilités, analyse des données et statistique, Technip, 1990
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Models for understanding

▶ Models for understanding: Identification of underlying mechanisms

→ Insights in the nature of the phenomenon of interest

→ Few parameters that should be interpretable and that can be estimated using data

→ Parsimony principle

▶ Occam’s razor attributed to William of Ockham (1287–1347)

“Among competing hypotheses, the one with the
fewest assumptions should be selected”

▶ Ptolemy (90–168) “We consider it a good principle to explain the phenomena by the
simplest hypothesis possible”

▶ Isaac Newton (1642–1727) “We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances”

▶ Albert Einstein (1879–1955) “Everything should be made as simple as possible, but not
simpler”
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Models for understanding

▶ Model : y = f (x ; θ) + ε

• y : Variables to explain/predict Dependent variables, regressand, output variable, ...

• x : Explanatory variables Independent variables, regressor, input variable, ...

• θ : Parameters of the model Constants to calibrate and interpret

• ε : Unexplained part Noise (residual) with amplitude σ

▶ Examples of parametric models : Linear and nonlinear regression model, PLS regression
(quantitative analysis); Logistic model, (linear) discriminant, posterior distribution
(qualitative analysis, classification)

▶ Parameter calibration: Least-squares, maximum-likelihood, Bayesian network + Confidence
(credible) interval

▶ Model choice: Information criteria (Likelihood-ratio; Akaike, AIC; Bayesian, BIC, Bayes-
factor) + Statistical test
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Models for understanding: Limit

▶ Difficulties with Big data Large dimension and observation number

– Concentration of the likelihood: Information criteria AIC = −2ln
(
Ln(θ̂)

)
+ 2k or BIC

= −2 ln
(
Ln(θ̂)

)
+ ln(n)k tend to select models with minimal number of parameters

– Everything is significant (CI =
[
µ̂ ± qσ̂/

√
n
]
= {µ̂}, cor = 0.01 significant, ... )

▶ Difficulties with complex multidimensional nonlinear relationship Complex system

– Correlation-based model : Linear relationship / Least squares: for linear models

– Modelling-bias – Limited modelling complexity

George Box (1919–2013) : “Essentially, all models are wrong,
but some are useful”
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Models for understanding: Illustration



Models for understanding: Illustration II

Source: 2021/01/07/xkcd-curve-fitting-methods-and-the-messages-they-send �
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Models for prediction

▶ Origins : Knowledge discovery in data bases G. Piatetsky-Shapiro, 1980

– A model is merely an algorithm coming more from the data than from a theory

→ No “Modelling bias”

– Algorithm complexity itself (hyperparameter) depends on the data structure and size

– Focus on prediction ability, i.e. capacity of making good predictions for new data

▶ Models for prediction : “Black-box” models Vladimir Vapnik, 2006

– Same formulation y = fH (x ; θ) + ε but here f is a non-linear function depending on
hyperparameters H and the dimensions of x and θ are high

– Exemples of algorithms for prediction: Neural network, support-vector-machine,
random forest – Hyperparameters: number of neurones, support vectors, decision trees.

– Supervised learning : Training minimising a loss function (squared error, cross-entropy)

– Black-box because the coefficients are too numerous to be interpreted and because the
algorithm structure and complexity depend on the data
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Can we open the black box of AI?
Davide Castelvecchi, Nature 538, 20–23, 2016
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http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731
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Models for prediction: Theory

▶ Risk minimization

– L is a loss function, the risk R = E(L) is the expectation of the loss

– Empirical risk: Remp = 1
n

∑
i L

(
yi , f (xi ; θ)

)

▶ Vapnik’s inequality: R < Remp +
√

h(ln(2n/h)+1)−ln(α/4)
n

with h the Vapnik–Chervonenkis dimension (i.e. the cardinality of the largest set of points
that the algorithm can shatter — prediction ability)

– No distributional assumptions are necessary (only h << n)

– Formally Risk shared between empirical risk and a function depending on the ratio
h/n (ratio h/n of interest)

– Minimisation of the empirical risk by increasing the model complexity h

– Increase of the complexity and prediction ability h as n increases
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Models for prediction: Practice

▶ The VC-dimension is difficult to evaluate in practice

▶ Setting the algorithm complexity: Trade-off between quality-of-fit and training robustness

– Too simple algorithm: precise training but weak prediction

– Too complex: imprecise training, good prediction for training but weak for new data

– Bias-Variance-Dilemma (underfitting VS overfitting)

▶ Empirical analysis of the algorithm complexity

– Cross-validation : (random) partition of the data in training and testing set

Training set used to fit the models

Validation set use to estimate prediction error

– Bootstrap aggregating: Repeating the operation to evaluate the precision of estimation

– Algorithm complexity selection by minimising the mean testing error (cross-validation)

– Evaluation of the estimation precision using the empirical bootstrap distribution
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Bias-Variance-Dilemma

1

1. Source : elitedatascience.com/bias-variance-tradeoff �
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Cross-validation (underfitting VS overfitting)

2

2. Source: kaggle.com/getting-started/166897 �

https://www.kaggle.com/getting-started/166897


Bootstrap

3

3. Popular quote



Models for understanding: Illustration
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Models for prediction and machine learning: Applications in engineering

4

4. Source: Towards data science
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Applications: Autonomous vehicles

▶ Driving situations are extremely varied and the driving process is poorly
structured

▶ Defining an understandable model giving satisfying responses in any situation is
not possible (especially in urban/dense situations or for mixed flow)

→ Autonomous driving is a typical application field for machine learning
techniques and the ‘models for prediction’

▶ The perception and motion planning of autonomous vehicles by machine learning
actively developed since the 1990’s

– Projects: NAVLAB (1984), Eureka Prometheus (1985), NAHSC (1997), Cybercar
(1997), Darpa Challenges (2007), Google Car (since 2010), Tesla (since 2014),
PROUD (2015), DELPHI (2016), VIAC Challenge, GCDC, ...
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Autonomous vehicles: Example (1)
Premise work (Autonomous steering – Stanford University, 1992)

“Simple” Neural networks
based on video analysis

Experiment:

2mn learning (120 obs only!)

→ Autonomous steering
in curved roads
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Autonomous vehicles: Example (2)
Recent work (End-to-End Deep Learning for Self-Driving Cars, Bojarski et al., 2016)

Convolutional neural networks
based on HD video analysis

DAVE-2 Project (DARPA Challenge)

Neural network: 27 M connections
and up to 250 000 parameters!

CNN architecture

Training phase

Bergische Universität Wuppertal

https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/


Revolution of the data science?

▶ Data-based approaches and machine learning techniques have clearly transformed the
engineering sciences over the last 20 years

▶ Keywords: Data Science, Internet of Things, Big Data, Industry 4.0, Sensor 4.0, etc.

▶ Revolution in the science?

– A. Ourmazd: Science in the age of machine learning. Nat. Rev. Phys. 2(7):342, 2020.

– A. W. Senior et al.: Improved protein structure prediction using potentials from deep
learning. Nature 577(7792): 706, 2020.

– F. Cichos et al.: Machine learning for active matter. Nat. Mach. Intell. 2(2):94, 2020.

– A. Esteva et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639):115, 2017.

– K. T. Schütt et al.: Quantum-chemical insights from deep tensor neural networks.
Nature Communications 8(1):1, 2017.

– K. T. Butler et al.: Machine learning for molecular and materials science. Nature
559(7715):547, 2018.

– K. G. Reyes and B. Maruyama: The machine learning revolution in materials? MRS
Bull. 44(7):530, 2019.
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