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Simulation of pedestrian dynamics

I Control of crowd and pedestrian flows in term of safety and performance

– Large infrastructures (train station, shopping malls) or large events (sport events, festivals)

I Pedestrian dynamics are not straightforward to predict

– Complex human behaviors including learning and anticipation / Complex multi-agent systems

I Management and control thanks to simulation tools

– Microscopic models inspired from physical, social, psychological or proxemics concepts / Examples
are force-based (social force), velocity-based or rule-based

– Models based on few interpretable parameters (desired speed, pedestrian size, ...)

I Fundamental diagram

– Phenomenological relationship between the speed (or the flow rate) and the density (or the mean
distance spacing)

– Weidmann’s model (1992) W (s̄, v0,T , `) = v0

(
1 − exp

(
` − s̄

v0T

))
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Speed/Spacing relationship for the Weidmann’s model (1992)

Mean distance spacing
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v 0
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v0T

))
v0 : Desired speed

T : Time gap

` : Pedestrian size

1/T
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Models for understanding versus Models for prediction1

INPUT

State of the system at t

Positions/velocities

of surrounding neigh-

bors and obstacles

OUTPUT

State of the system at t + 1

Velocity, acceleration

rate, jerk, etc. . .

Parametric models

Acc = f (xi , xj , ...) or Speed = g(xi , xj , ...)

with parameters v0, `, τ , ...

Non-linear function with few interpretable parameters

Artificial neural networks

Non-linear function with many non-interpretable parameters

1See e.g. Saporta, COMPSTAT 2008, pp 315-322 (2008)
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Artificial neural networks

I Data-based machine learning approaches for the motion prediction

– For autonomous driving, motion of robots in crowded environments or pedestrian
dynamics in complex geometries2

– Artificial neural networks (convolutional, LSTM, deep learning, ...)

I Feed-forward neural networks for speed prediction according to the positions of
the K nearest neighbors

1. Inputs are the relative positions to the K nearest neighbours (2K inputs)

NN1 = NN1

(
xi − x , yi − y , 1 ≤ i ≤ K

)
.

2. Speed prediction according to the relative positions and the mean distance spacing s̄K
to the K nearest neighbours (2K + 1 inputs)

NN2 = NN2

(
s̄K , (xi − x , yi − y , 1 ≤ i ≤ K)

)
.

2See e.g. Alahi et al., 2016; Chen et al., 2017; Das et al., 2015; Ma et al., 2016
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Corridor and bottleneck experiments

6m
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Bottleneck
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Corridor and bottleneck experiments

Corridor Bottleneck
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Speed/Spacing relationship
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Corridor

Experiment Spacing (m) Speed (m/s) ` (m) T (s) V0 (m/s)

Corridor 1.03 ± 0.40 0.35 ± 0.33 0.64 0.85 1.50

Bottleneck 1.14 ± 0.37 0.72 ± 0.34 0.61 0.49 1.64
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Setting the network structures

I Fully connected neurons spread in hidden layers

I Setting the network structures: Optimal number of layers and neurons

→ Tested structures (1)3, (2), (3), (4,2), (5,2), (5,3), (6,3) and (10,4)4

I Cross-Validation: Split of the data in training and testing homogeneous datasets

I Training thanks to back-propagation algorithm, minimising the mean squared
error

MSE =
1

N

N∑
i=1

(
vi − ṽi

)2
.

I Training and testing in bootstrap loops (50 subsamples) to evaluate the precision
of estimation

3One hidden layer with 1 neuron
4Two hidden layers with respectivelly 10 and 4 neurons
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Network NN1 based on the relative positions
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Network NN2 based on the relative positions and mean spacing
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Network NN2 based on the relative positions and mean spacing
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Prediction for the speed

I Analyse of several combinations of training and testing sets to evaluate the
precision and robustness of the predictions

I Tested scenario Notation :

Training set / Testing set

C: Corrridor experiment

B: Bottleneck experiment

– B/B and C/C.

Single dataset is used for both training and testing

– B/C and C/B.

Prediction ability in new situations

– C+B/B, C+B/C and C+B/C+B.

Prediction in heterogeneous situations

I Weidmann speed model used as benchmark
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Mean squared error
NN1: based on relative positions — NN2: based furthermore on mean distance spacing
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Quality of the fit

I Weidmann’s model based on k0 = 3 parameters

I Artificial neural networks NN1 and NN2 based on k1 = 189 and k2 = 88

I Akaike Information Criterion for the quality of the fit (normal residuals)

AIC = 2k + n ln(MSE) + n
(
1 + ln(2π)

)
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AIC difference
NN1: based on relative positions — NN2: based furthermore on mean distance spacing
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Summary

I Significant prediction improvement of pedestrian dynamics (MSE and AIC) with artificial
neural networks in cases of heterogeneous scenarios

I First steps for the modelling of pedestrians behaviors in complex infrastructures/buildings

I Data-based approach for the prediction – No modelling of mechanisms governing the
pedestrian motion

I Use of mean spacing as input, even if based on pedestrian relative positions already
provided, allows improving the prediction and reducing the network complexity

I Training, testing and setting of the network complexity with large experimental datasets5

I Prediction of full trajectories in two dimensions and coupling to strategical routing models
for simulation in complex scenarios

I Comparison to other parametric models (force-based models) and multi-agent systems

5ped.fz-juelich.de/database
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Source: Cartoonstock.com

Many thanks for your attention!

https://www.cartoonstock.com/directory/d/drowning_in_a_sea_of_people.asp
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