Misanthrope process for large-scale simulation of pedestrian dynamics

hEART Conference — 13-16.09.2016 — TU Delft

September 15, 2016 | Antoine Tordeux² | Forschungszentrum Jülich, Germany

²a.tordeux@fz-juelich.de
Forschungszentrum Jülich

♦ Multidisciplinary research center
 - Health
 - Energy
 - Environment
 - Information technology

♦ Approx. 5000 employees

♦ Jülich Supercomputing Centre – Division Civil Safety and Traffic
 - Experimentation and modelling of pedestrian dynamics
 - Fire and evacuation simulation
 - Safety of large-scale events
 - Collaboration with Wuppertal and Cologne Universities
Motivations

♦ Nowadays more than **half of mankind lives in cities**

♦ **Dense crowds** are frequent in train stations, fairs, city centers or during large-scale events (sport, spectacle, concert, demonstration...)

♦ Knowledge of pedestrian dynamics is important for the design and optimization of facilities with respect to **safety or level of service**

♦ **Complex system**: experimentation, data collection, modelling and simulation of pedestrian dynamics are necessary
Misanthrope process

- Borrowed from *Interacting Particle Systems* widely studied in theoretical physics\(^3\) (see also zero-range, exclusion, or mean average processes)

- **Continuous time Markovian jump process** describing evolution of particles in a lattice

- **Unique stationary distribution** (finite set) that can easily be calculated by simulation (Monte Carlo experiments)

- **Misanthrope process**: Each site can contain several particles and the jump rate depends on particle numbers in departure and arrival sites\(^4\)

\(^3\) T Liggett (1985) *Interacting particle systems* Springer

\(^4\) C Cocozza-Thivent (1985) *Z Wahr Verw Gebiete* 70:509-523
Pedestrian model

Hexagonal lattice with $a > 0$ the face length (area $\alpha = 1.5\sqrt{3}a^2$)
Each hexagon can contain $n \in [0, N]$ pedestrians, $N \geq 1$
Jump rate b to define

$$
\rho_m \propto b(n, n_1) + b(n, n_2) + b(n, n_3) + b(n, n_4) + b(n, n_5) + b(n, n_6)
$$
Model characteristics

- **Discrete space / Continuous time** (also for the simulation)
- **Intrinsically stochastic** (jump times exponentially distributed)
- **Several pedestrians by cell** (size cell sufficiently big)
Model characteristics

| Discrete space / Continuous time (also for the simulation) |
| Intrinsically stochastic (jump times exponentially distributed) |
| Several pedestrians by cell (size cell sufficiently big) |

- Pedestrians jump individually from one cell to one of the six neighbors
- Jump rate depends on pedestrian number on departure and arrival sites
Model characteristics

- **Discrete space / Continuous time** (also for the simulation)
- **Intrinsically stochastic** (jump times exponentially distributed)
- **Several pedestrians by cell** (size cell sufficiently big)

- **Pedestrians jump individually** from one cell to one of the six neighbors
- Jump rate depends on pedestrian number on departure and arrival sites

→ **Mesoscopic approach**: Pedestrians are individually considered but their dynamics are aggregated by cell

→ **Exclusion model for** $N = 1$ (size of the cell = size of a pedestrian)
Jump rate function

♦ **The jump rate** of a pedestrian from a cell with \(n \geq 1 \) pedestrian to cell \(i \) with \(n_i \geq 0 \) pedestrians is

\[
b_i(n, n_i) = \kappa \times J(n, n_i) \times D_i(J(n, n_i))
\]

(1)
Jump rate function

- **The jump rate** of a pedestrian from a cell with \(n \geq 1 \) pedestrian to cell \(i \) with \(n_i \geq 0 \) pedestrians is

\[
b_i(n, n_i) = \kappa \times J(n, n_i) \times D_i(J(n, n_i))
\]

(1)

- The flow \(J(n, n_i) \) is the **minimum between the demand** of the considered cell and **the supply** of the destination cell \(i \):

\[
J(n, n_i) = \min\{\Delta(n/\alpha), \Sigma(n_i/\alpha)\}
\]

(2)
Jump rate function

♦ The jump rate of a pedestrian from a cell with \(n \geq 1 \) pedestrian to cell \(i \) with \(n_i \geq 0 \) pedestrians is

\[
b_i(n, n_i) = \kappa \times J(n, n_i) \times D_i(J(n, n_i))
\]

(1)

♦ The flow \(J(n, n_i) \) is the minimum between the demand of the considered cell and the supply of the destination cell \(i \):

\[
J(n, n_i) = \min\{\Delta(n/\alpha), \Sigma(n_i/\alpha)\}
\]

(2)

♦ The selected direction \(D_i(J(n, n_i)) \) maximizes the weighted flow to the desired direction \(h \):

\[
D_i(J(n, n_i)) = \begin{cases}
1 & \text{if } f(h - h_i)J(n, n_i) = \max_i f(h - h_i)J(n, n_i) \\
0 & \text{otherwise}
\end{cases}
\]

(3)
Model parameters

Supply $\Sigma(\cdot)$ and demand $\Delta(\cdot)$ functions (fundamental diagram)

Weight $f(\cdot)$ for the desired direction (here $x \mapsto 1 + \cos(x)$)
Simulation of the model

Each cell with at least one pedestrian has an exponential clock

\[T_0 = t + \mathcal{E}(b) \]

(4)
Simulation of the model

- Each cell with at least one pedestrian has an **exponential clock**

\[T_0 = t + \mathcal{E}(b) \] \hspace{1cm} (4)

- **Event-based simulation in continuous time** by taking successive minimum jump times:

 1. **Step 1.** Select the cell with minimal jump time
 2. **Step 2.** Set time to selected cell jump time / Do the jump
 3. **Step 3.** Update jump times of the cells where jump rate \(b \) changed
 4. **Step 4.** Return to step 1
Simulation of the model

1. Select cell with minimal jump time
2. Jump of a pedestrian
 Global time $t = T_0$
3. Update cell jump time where rate changed

Repeat
Simulation of uni-directional flows

Snapshots in stationary state according to a
Simulation of uni-directional flows

Fundamental diagram in stationary state according to a

Density (ped/m^2) vs. Flow (ped/s/m)

Density (ped/m^2) vs. Dens std-dev (ped/m^2)
Presence of obstacles
Mean performances in stationary state
Presence of obstacles
Mean performances in stationary state
Multi-directional flow model

- $d \in \mathbb{N}^*$ possible desired directions (h_1, h_2, \ldots, h_d)

\rightarrow System described by pedestrian numbers by direction $(n^{h_1}, \ldots, n^{h_d})$

Proportion of pedestrians by direction

$$p^h = \frac{n^h}{\sum_h n^h}$$ (5)
Multi-directional flow model

- $d \in \mathbb{N}^*$ possible desired directions ($h_1, h_2, \ldots h_d$)

 \rightarrow System described by pedestrian numbers by direction ($n^{h_1}, \ldots n^{h_d}$)

Proportion of pedestrians by direction

$$p^h = \frac{n^h}{\sum_h n^h}$$ (5)

- Jump rate for the pedestrians with direction h to cell i:

 $$b^h_i(n, n_i) = p^h \times b_i(n, n_i)$$ (6)

Proportion p^h of total flow affected to pedestrians with direction h

Uni-directional model if only one direction exists ($p^h = 1$)
Counter flows
Random initial condition

\[\rho = 2.5 \text{ ped} / \text{m}^2 \quad a = 2.5 \text{ m} \]
Multi-directional flow model (2)

- **Total flow bounded** by the proportion by direction to model frictions for pedestrians with different directions

\[J(n, n_i) \rightarrow J^h(n, n_i) = \min\{ \tilde{p}^h_i Q, J(n, n_i) \} \]

(7)

with \(\tilde{p}^h = p_0 + (1 - p_0) p^h \) and new parameter \(p_0 \in [0, 1] \)
Multi-directional flow model (2)

- **Total flow bounded** by the proportion by direction to model frictions for pedestrians with different directions

\[
J(n, n_i) \rightarrow J^h(n, n_i) = \min\{ \tilde{p}^h_i Q, J(n, n_i) \}
\]
(7)

with \(\tilde{p}^h = p_0 + (1 - p_0)p^h \) and new parameter \(p_0 \in [0, 1] \)

- Same model as previous one if \(p_0 = 1 \) (\(J^h = J \) for all \(h \))
- If \(p_0 = 0 \), then \(\tilde{p}^h = p^h \): the jump rates to cells that do not contain any pedestrian with the same direction are nil.
Bounded fundamental diagram

\[Q = Q_0 \rho_0 \]

\[\rho^h \]

\[\rho_0 = 0.2 \]

Flow (ped/s/m) vs Density (ped/m²)
Counter flows
Random initial condition

\[\rho_0 = 0.2 \quad \rho = 2.5 \text{ ped/m}^2 \quad a = 2.5 \text{ m} \]

\[J(\text{ped/m/s}) \]

\[\bar{\sigma}(\text{ped/m}^2) \]

\[0 \quad 200 \quad 600 \quad 1000 \]

\[0.0 \quad 0.6 \quad 1.2 \]

\[0.0 \quad 1.0 \]

Time (s)

Density, \(h = \frac{\pi}{2} \)
Density, \(h = -\frac{\pi}{2} \)
Counter flows
Random initial condition

\[p_0 = 0.2 \quad \rho = 4 \text{ ped/m}^2 \quad a = 2.5 \text{ m} \]
Counter flows
Random initial condition

\[p_0 = 0.2 \quad \rho = 4 \text{ ped/m}^2 \quad a = 4 \text{ m} \]
Counter flows
Performances in stationary state

\[p_0 = 0.2 \quad \rho = 2.5 \text{ ped/m}^2 \quad a = 2.5 \text{ m} \]

50 experiments per parameter value; Line: mean value; Grey area: Min-max interval

Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:
Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:
 - **Hexagon size** a (free parameter)
Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:
 - Hexagon size a (free parameter)
 - Maximal density ρ_m; Desired speed v_0; Congestion speed γ
Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:
 - Hexagon size a (free parameter)
 - Maximal density ρ_m; Desired speed v_0; Congestion speed γ
 - FD bound p_0 (multi-directional flows, free parameter)
Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:
 - **Hexagon size** \(a \) (free parameter)
 - **Maximal density** \(\rho_m \); **Desired speed** \(v_0 \); **Congestion speed** \(\gamma \)
 - **FD bound** \(p_0 \) (multi-directional flows, free parameter)

Mesoscopic: Pedestrian individually considered / Dynamics aggregated by cell
Summary

- Stochastic pedestrian model in 2D with 5 parameters:
 - Hexagon size a (free parameter)
 - Maximal density ρ_m; Desired speed v_0; Congestion speed γ
 - FD bound p_0 (multi-directional flows, free parameter)

Mesoscopic: Pedestrian individually considered / Dynamics aggregated by cell

Density (and flow) bounded between zero and given maximum value
Summary

- Stochastic pedestrian model in 2D with 5 parameters:
 - Hexagon size a (free parameter)
 - Maximal density ρ_m; Desired speed v_0; Congestion speed γ
 - FD bound p_0 (multi-directional flows, free parameter)

Mesoscopic: Pedestrian individually considered / Dynamics aggregated by cell
Density (and flow) bounded between zero and given maximum value
Unique stationary distribution / Easy and fast to simulate
Summary

♦ Stochastic pedestrian model in 2D with 5 parameters:

- **Hexagon size** a (free parameter)
- **Maximal density** ρ_m; **Desired speed** v_0; **Congestion speed** γ
- **FD bound** p_0 (multi-directional flows, free parameter)

Mesoscopic: Pedestrian individually considered / Dynamics aggregated by cell

Density (and flow) bounded between zero and given maximum value

Unique stationary distribution / Easy and fast to simulate

Description of realistic fundamental diagrams, congestion/rarefaction and lane formation for large cells (i.e. low variability – *Freezing by Heating effect*)
Working perspectives

♦ Comparison to classical microscopic (force-based) and macroscopic (CTM or queuing models) approaches
→ Complexity, realism level, described phenomena
Working perspectives

♦ Comparison to classical microscopic (force-based) and macroscopic (CTM or queuing models) approaches
 → Complexity, realism level, described phenomena

♦ Calibration and evaluation of the model by using real data
 → Potential application scales and limits of the model
Working perspectives

♦ Comparison to classical microscopic (force-based) and macroscopic (CTM or queuing models) approaches
 → Complexity, realism level, described phenomena

♦ Calibration and evaluation of the model by using real data
 → Potential application scales and limits of the model

♦ Model to understand ⇔ Model to predict
 → Technical and strategic planning motion modelling + other mechanisms
 → Large-scale simulation of pedestrian dynamics