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Stop-and-go dynamics in human-driven flows

» Pedestrian, bicycle and car single-file motions tend to describe stop-and-go
dynamics for congested density levels

» Succession of braking (shock) and acceleration (rarefaction) sequences

— Accordion traffic
> Self-organized collective phenomenon

» Besides its scientific interest, stop-and-go waves have negative impact on safety,
comfort and environment

» Still not well understood, notably for adaptive cruise control (ACC) advanced
driver-assistance systems
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Stop-and-go waves in traffic flow

- : S
:E:i 1
L |77

W/ 10 7/11////4W%) 7 /4
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Y Sugiyama et al.: Traffic jams without bottlenecks
New J Phys, 10:033001, 2008*

RE Stern et al. Dissipation of stop-and-go
waves via control of autonomous vehicles
Transp Res C-Emerg 89:205, 2018*
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https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://www.youtube.com/watch?v=ZNLIoolCeKI
https://www.youtube.com/watch?v=ZNLIoolCeKI
https://iopscience.iop.org/article/10.1088/1367-2630/10/3/033001/meta
https://iopscience.iop.org/article/10.1088/1367-2630/10/3/033001/meta
Videos/movie.mp4
https://stern.cege.umn.edu/research
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
Videos/ACC.mp4
https://www.youtube.com/watch?v=Mh6PNQbKBYo
http://www.trafficforum.org/
Videos/schockwellen2.mp4
Videos/movie2.mp4

Observation of metastability and phase transition

A Schadschneider et al. Stochastic Transport in Complex Systems, Springer, 2010.
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https://www.sciencedirect.com/book/9780444528537/stochastic-transport-in-complex-systems

Stop-and-go in pedestrian dynamics

N Bain & D Bartolo. Dynamic response and A Portz & A Seyfried: Pedestrian and Evacuation

hydrodynamics of polarized crowds Dynamics, pp. 577-586, Springer, 2011
Science 363(6422):46, 2019**
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https://link.springer.com/chapter/10.1007/978-1-4419-9725-8_52
https://link.springer.com/chapter/10.1007/978-1-4419-9725-8_52
Videos/movie2b.mp4
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891
Videos/aat9891s1.mp4
Videos/aat9891s2.mp4
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891

Are commercially implemented adaptive cruise control systems stable?

G Gunter et al. IEEE Trans Intell Transp Sys 22(11):6992, 2020

» Experimental test with eight 2018 model
year ACC equipped vehicles

» Initial disturbance of 10 km/h

Platoon experiment: Vehicle A minimum setting

— Veticle 0 (lead vehicie)
—Vehicle 1
Vehicle 2
—Vehicle 3
Vehicle 4

Speed [m/s]

X ACC disengagement
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Time [s]
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https://www.sciencedirect.com/science/article/pii/S0968090X21000772

Further experiments with ACC systems

M Makridis et al. OpenACC: An open database of car-following experiments to study the properties of commercial ACC systems TRC 125:103047, 2021
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https://ieeexplore.ieee.org/abstract/document/9123538
https://ieeexplore.ieee.org/abstract/document/9123538
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Delay-induced stop-and-go dynamics
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Stop-and-go dynamics in deterministic traffic models

» Stop-and-go by means of string instability e X1 — % Ve
of the homogeneous configurations
» Examples Xk e
— Delayed 1st order model by Newell (1961) S(t+ 1) = V (xqa(t) — xi(t))
— 2nd order OVM by Bando et al. (1995) Xk (t) = %(V(Xk“(t) — xk(t)) — )%k(t))
— Unstable if inertia 7 exceeds critical value: T>QV)t=T/2

> Unstable models may have periodic solutions (limit-cycle) with stop-and-go
waves for nonlinear models and fine tuning of the parameters

— Phase transition from uniform equilibrium to oscillating dynamics
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https://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.51.1035

Stop-and-go dynamics in deterministic traffic models

Perturbed system: phase transition

Undamped oscillation activated by
the initial perturbation
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Noise-induced stop-and-go dynamics

» Stop-and-go dynamics in deterministic models results from inertia, nonlinear
dynamics, linear instability phenomena (metastability), and phase transition

— Linear instability compensated by nonlinear mechanisms: sensitivity to non-linearity

— Not generic: Require fine-tuning of the parameters
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Noise-induced stop-and-go dynamics

» Stop-and-go dynamics in deterministic models results from inertia, nonlinear
dynamics, linear instability phenomena (metastability), and phase transition

— Linear instability compensated by nonlinear mechanisms: sensitivity to non-linearity

— Not generic: Require fine-tuning of the parameters

» Stochastic cellular automata models have shown in the
1990's that noise effects can initiate stop-and-go dynamics

— K Nagel & M Schreckenberg. A cellular automaton model for freeway
traffic. J Phys | 2:2221, 1992

— R Barlovic, A Schadschneider & M Schreckenberg. Metastable states in

cellular automata for Traffic Flow. Eur Phys J B 5:793, 1998 E
NaSch J Phys | 2:2221, 1992

» Noise kick the system out of the steady state by making it stochastic periodic
(e.g. oscillating autocorrelation functions)
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Noise-induced stop-and-go dynamics

Noise-induced oscillation

Damped oscillation continuously maintained
by the perturbations

Steady state
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Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model
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Nature of the noise in pedestrian speed sequences

Data: ped.fz-juelich.de/database
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» Linear power spectrum (ACF Fourier transform) of pedestrian speed according
to the inverse of squared frequency

» Characteristic of a Brownian noise (red noise) to the pedestrian speed
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http://ped.fz-juelich.de/database

Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851

» Linear model with additive noise given by the Ornstein-Uhlenbeck process

dx(t) = Aaga(t) — xk(t) — £)dt + ex(t)dt
deg(t) —Bek(t)dt + od Wi (t)

with (Wg(t))k independent Wiener processes (Brownian motions)
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Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851

» Linear model with additive noise given by the Ornstein-Uhlenbeck process

dx(t) = Aaga(t) — xk(t) — £)dt + ex(t)dt
deg(t) —Bek(t)dt + od Wi (t)

with (Wg(t))k independent Wiener processes (Brownian motions)

> Parameters Inverse of time gap A 1s ! OV function
Pedestrian size ¢ 03m
Noise amplitude o 0.09 ms—3/2 Noise
Noise relaxation B8 02s1

» Estimates of the noise relaxation time 1/8 ~ 5 s is different from the relaxation
or reaction time 7 = 0.5 s of deterministic models
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Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851
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https://ped.fz-juelich.de/da/doku.php?id=corridor2

Invariant distribution of the system on a torus

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

T
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\ LAxk:Xk+1*Xk‘J /
I |
Ring of length L

™~
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» Differential form for the differences yx = Axx — L/N to the homogeneous solution

-1 1
dY(t) = (AAY(t) + AZ(t))dt, A=

1 -1 1
=) is a Markov process in RV x RV (Ornstein-Uhlenbeck and Feller process)

dZ(t) = BZ(t)dt + GAW(t), Z(0)=z, B= ("A A ) G = (O 0 )

0 —Bly 0 oly
2
with generator Lf(z) = S22V (Bz); aéf) +1 Zi'\}zl(GGT)kj ngfé,Zz), Sato, 1984
j 2 d
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https://epubs.siam.org/doi/abs/10.1137/20M1315567
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Invariant distribution of the system on a torus

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870
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Invariant distribution of the system on a torus

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

» Differential form for the differences yx = Ax, — L/N to the homogeneous solution
—1 1
dY(t) = (AAY(t) + AZ(t))dt, A= . i
1 —1 1
» 7 :=(Y,=)is a Markov process in R" x R" (Ornstein-Uhlenbeck and Feller process)

dZ(t) = BZ(¢)dt + GAW(t), Z(0) =z, B= <AA A ) G= (0 0 )

0 —Bln 0 oly
2
with generator Lf(z) = ﬁ’ll(Bz)j a{;’f) + 3 Zi,\j‘:l(GGT)kj gz:gz)_ Sato, 1984
i 2 i

Theorem [t holds Z(t) — Z(oo) as t — oo in law, where Z(oo) is a Gaussian random variable
on R?N with mean zero and covariance matrix

T(o0) = [° eBGGT e dt
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Correlation and autocorrelation

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

» Asymptotic covariance of the spacing of an agent k to the spacing of the agent k + j,
with v, = exp(i2wn/N)
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» Asymptotic autocovariance at time 7 > 0
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https://epubs.siam.org/doi/abs/10.1137/20M1315567

Correlation and autocorrelation at the limit N, L — oo

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

» Asymptotic correlation of the spacing in stationary state for the hydrodynamical limit

N, L — oo with L/N constant )
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Outline

Noise-induced stop-and-go dynamics

Noise-induced subcritical instability

Noise-induced stop-and-go traffic dynamics — 18.02.2025, Forschungszentrum Juelich, Germany 20/29




Extended model with discrete gradient in space

» The noise in the Ornstein-Uhlenbeck model is independent from the dynamics.

In addition, the model is unconditionally stable.

» Extended model: Coupling of the noise to the spacing difference with the
predecessor (discrete gradient in space)

{ dx (1) A(p1(t) — xu(£) — £)dt + i (t)dt
dEk(t) = —’y(AXk+1(f) = AXk(t)) = ﬂé‘k(f)dt + O'de(t)

4 < 0: repulsion of jam

— —_—
¥ > 0: attraction to jam
—_— —
Axi_s Axiy Awx; Axiiy Axiyo
i—2 i—1 i i+1 i+2 i+3
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Stability analysis

» Assume 3, A > 0, the exact string stability condition is
YA+ B)(1 = @) = B2 + BA[M(1 — )(A + B) + 7]
—4y(1 =) [v(1—¢q)+BA] >0 Vi=1,...,[N/2], ¢ = cos(2wl/N)

» In the thermodynamic limit for which N, L — oo with N/L constant, the
condition for the longest wavelength / =1 is

BAN—2v>0
» The condition for the shortest wavelength | = N /2 is

BA+27>0

» Sufficient linear stability condition: ByA>0 and —fBA <2y < BA

The condition systematically holds for v = 0 (initial OU model).
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Examples of trajectories
Simulation results with 50 agents, T =1, 3 = 0.2, o = 0.05 |v*| ~ 0.1283

Time Time Time
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Autocorrelation of the speed

Simulation results with 50 agents, T =1, 3 = 0.2, o = 0.05 |v*| =~ 0.1283
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Outline

Noise-induced stop-and-go dynamics

Noise-induced nonlinear instability
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Nonlinear car-following models

» Both linear stochastic models based on the Ornstein-Uhlenbeck process can
describe qualitatively stop-and-go waves observed in pedestrians dynamics

— Evanescent waves for the unconditionally stable OU model
— Subecritical instability for the OU model including a gradient in space

» These stochastic models are linear and ergodicl: they do not recapture the
phase transition observed in vehicular dynamics

— White noise cannot influence the stability properties of linear models

1 They have a unique and stable (normal) stationary distribution
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Nonlinear car-following models

» Both linear stochastic models based on the Ornstein-Uhlenbeck process can
describe qualitatively stop-and-go waves observed in pedestrians dynamics

— Evanescent waves for the unconditionally stable OU model

— Subecritical instability for the OU model including a gradient in space

» These stochastic models are linear and ergodicl: they do not recapture the
phase transition observed in vehicular dynamics

— White noise cannot influence the stability properties of linear models

» What about nonlinear car-following models?

Can the stability properties and long-term behavior of nonlinear models be
impacted by white noise?

— Yes! c.f. Kapitza inverted pendulum

1 They have a unique and stable (normal) stationary distribution
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Adaptive time gap model

Overdamped local and stable for any T, 7 > 0

» The time gap is the distance gap divided by the speed
Tie(t) = [Ax(t) — a/vi(t) = g(t)/vi(t),  vi(t) = dx(t)/dt.

— The time it takes to collide at constant speed if the predecessor stops.



Adaptive time gap model

Overdamped local and stable for any T, 7 > 0

» The time gap is the distance gap divided by the speed
Tie(t) = [Ax(t) — a/vi(t) = g(t)/vi(t),  vi(t) = dx(t)/dt.

— The time it takes to collide at constant speed if the predecessor stops.

> Assume that the time gap T(t) is relaxed to a desired time gap parameter T

1
dTe(t) = ;[T— Tu(t)]dt, T~12s, 7~5s

1
» Newtonian formulation: dv, = T P\ (g — Twk) + Avk] dt
k

A — T A
» Stochastic formulation: dv, = % dt + odW,
e (A Xk, Vk

where T; is a bounded molifier of the time gap and Wj are independent
standard Brownian motions with volatility o.



Phase transition as the noise volatility increases

Tomer et al.
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Figure: The curves are Monte Carlo averages, while the areas show the min/max range.
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Phase diagram
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Figure: Phase diagram of the stochastic ATG model in the (L/N,1/c)-space.
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Outline

Summary
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Noise-induced stop-and-go

Summary

Stochastic oscillation
Damped oscillation maintained
by the perturbations

< ) /-
€< =
I

7N

Steady state

Linear framework

» Stochastic oscillation: Oscillation of the system at its own deterministic frequency

(longest wavelength) due to the stochastic perturbations

— Evanescent (unstable) stop-and-go waves with no phase transition

(linear ergodic framework with unique stationary distribution)

— Subcritical instability: wave amplification near the critical linear instability setting
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Linear framework

Phase transition

Undamped oscillation activated by
the perturbation

Steady state

Nonlinear framework  staple

» Stochastic oscillation: Oscillation of the system at its own deterministic frequency
(longest wavelength) due to the stochastic perturbations

— Evanescent (unstable) stop-and-go waves with no phase transition

(linear ergodic framework with unique stationary distribution)

— Subcritical instability: wave amplification near the critical linear instability setting

» Phase transition: Nonlinear models with unstable uniform equilibrium solution

— Delay-induced (classic): Linear instability — Stop-and-go for fine tuning of the
parameters: linearly unstable dynamics hard to control

— Noise-induced: Nonlinear instability for large perturbations — Unexpected results: the

deterministic model is unconditionally deterministically stable

P Linear stability not sufficient to control stop-and-go dynamics in stochastic systems
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Many thanks for your
kind attention!

Division for traffic safety and reliability
University of Wuppertal

vzu.uni-wuppertal.de

It’s not the destination, but the
journey that counts.

Unless you’re stuck in traffic.
Then it’s the destination.

(© Mike Baldwin / Cornered
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