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Stop-and-go dynamics in human-driven flows

▶ Pedestrian, bicycle and car single-file motions tend to describe stop-and-go
dynamics for congested density levels

▶ Succession of braking (shock) and acceleration (rarefaction) sequences

→ Accordion traffic

▶ Self-organized collective phenomenon

▶ Besides its scientific interest, stop-and-go waves have negative impact on safety,
comfort and environment

▶ Still not well understood, notably for adaptive cruise control (ACC) advanced
driver-assistance systems
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Stop-and-go waves in traffic flow

J Treiterer: Investigation of traffic dynamics
by aerial photogrammetry techniques

EES-278 Final Rpt, 1975
Y Sugiyama et al.: Traffic jams without bottlenecks

New J Phys, 10:033001, 2008⋆

RE Stern et al. Dissipation of stop-and-go
waves via control of autonomous vehicles

Transp Res C-Emerg 89:205, 2018⋆

www.trafficforum.org⋆
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https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://trid.trb.org/view/30152
https://www.youtube.com/watch?v=ZNLIoolCeKI
https://www.youtube.com/watch?v=ZNLIoolCeKI
https://iopscience.iop.org/article/10.1088/1367-2630/10/3/033001/meta
https://iopscience.iop.org/article/10.1088/1367-2630/10/3/033001/meta
Videos/movie.mp4
https://stern.cege.umn.edu/research
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18301517
Videos/ACC.mp4
https://www.youtube.com/watch?v=Mh6PNQbKBYo
http://www.trafficforum.org/
Videos/schockwellen2.mp4
Videos/movie2.mp4


Observation of metastability and phase transition
A Schadschneider et al. Stochastic Transport in Complex Systems, Springer, 2010.

Speed
Flow

Speed Flow

Red curves: Mean value Local flow
Green curves: Standard deviation J = V × ρ
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https://www.sciencedirect.com/book/9780444528537/stochastic-transport-in-complex-systems


Stop-and-go in pedestrian dynamics

A Portz & A Seyfried: Pedestrian and Evacuation
Dynamics, pp. 577-586, Springer, 2011

N Bain & D Bartolo. Dynamic response and
hydrodynamics of polarized crowds

Science 363(6422):46, 2019⋆⋆
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https://link.springer.com/chapter/10.1007/978-1-4419-9725-8_52
https://link.springer.com/chapter/10.1007/978-1-4419-9725-8_52
Videos/movie2b.mp4
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891
Videos/aat9891s1.mp4
Videos/aat9891s2.mp4
https://www.science.org/doi/10.1126/science.aat9891
https://www.science.org/doi/10.1126/science.aat9891


Are commercially implemented adaptive cruise control systems stable?
G Gunter et al. IEEE Trans Intell Transp Sys 22(11):6992, 2020

▶ Experimental test with eight 2018 model
year ACC equipped vehicles

▶ Initial disturbance of 10 km/h
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https://www.sciencedirect.com/science/article/pii/S0968090X21000772


Further experiments with ACC systems
M Makridis et al. OpenACC: An open database of car-following experiments to study the properties of commercial ACC systems TRC 125:103047, 2021
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https://ieeexplore.ieee.org/abstract/document/9123538
https://ieeexplore.ieee.org/abstract/document/9123538
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Stop-and-go dynamics in deterministic traffic models

ẋk ẋk+1

xk xk+1

xk+1 − xk▶ Stop-and-go by means of string instability
of the homogeneous configurations

▶ Examples

– Delayed 1st order model by Newell (1961) ẋk (t + τ) = V
(
xk+1(t) − xk (t)

)
– 2nd order OVM by Bando et al. (1995) ẍk (t) =

1
τ

(
V (xk+1(t) − xk (t)) − ẋk (t)

)
→ Unstable if inertia τ exceeds critical value: τ > (2V ′)−1 = T/2

▶ Unstable models may have periodic solutions (limit-cycle) with stop-and-go
waves for nonlinear models and fine tuning of the parameters

– Phase transition from uniform equilibrium to oscillating dynamics
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https://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.51.1035


Stop-and-go dynamics in deterministic traffic models

Perturbed system: phase transition

Undamped oscillation activated by

the initial perturbation

ε

t = 0

Steady state

Unstable

Stable
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Noise-induced stop-and-go dynamics

▶ Stop-and-go dynamics in deterministic models results from inertia, nonlinear
dynamics, linear instability phenomena (metastability), and phase transition

– Linear instability compensated by nonlinear mechanisms: sensitivity to non-linearity

– Not generic: Require fine-tuning of the parameters

▶ Stochastic cellular automata models have shown in the
1990’s that noise effects can initiate stop-and-go dynamics

– K Nagel & M Schreckenberg. A cellular automaton model for freeway
traffic. J Phys I 2:2221, 1992

– R Barlovic, A Schadschneider & M Schreckenberg. Metastable states in
cellular automata for Traffic Flow. Eur Phys J B 5:793, 1998.

. NaSch J Phys I 2:2221, 1992

▶ Noise kick the system out of the steady state by making it stochastic periodic
(e.g. oscillating autocorrelation functions)
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Noise-induced stop-and-go dynamics

Noise-induced oscillation

Damped oscillation continuously maintained

by the perturbations

ε

∀ t

Steady state

Stable
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Nature of the noise in pedestrian speed sequences
Data: ped.fz-juelich.de/database
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▶ Linear power spectrum (ACF Fourier transform) of pedestrian speed according
to the inverse of squared frequency

▶ Characteristic of a Brownian noise (red noise) to the pedestrian speed
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Model based on the Ornstein-Uhlenbeck process
A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851

▶ Linear model with additive noise given by the Ornstein-Uhlenbeck process{
dxk (t) = λ

(
xk+1(t)− xk (t)− ℓ

)
dt + εk (t)dt

dεk (t) = −βεk (t)dt + σdWk (t)

with (Wk (t))k independent Wiener processes (Brownian motions)

▶ Parameters Inverse of time gap λ 1 s−1 OV function

Pedestrian size ℓ 0.3 m

Noise amplitude σ 0.09 ms−3/2 Noise

Noise relaxation β 0.2 s−1

▶ Estimates of the noise relaxation time 1/β ≈ 5 s is different from the relaxation
or reaction time τ ≈ 0.5 s of deterministic models
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Invariant distribution of the system on a torus
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

ẋk ẋk+1

∆xk = xk+1 − xk

Ring of length L N agents
Agent k Agent k + 1

▶ Differential form for the differences yk = ∆xk − L/N to the homogeneous solution

dY (t) =
(
λAY (t) + AΞ(t)

)
dt, A =

−1 1
. . .

. . .

1 −1 1


▶ Z := (Y ,Ξ) is a Markov process in RN × RN (Ornstein-Uhlenbeck and Feller process)

dZ(t) = BZ(t)dt + GdW (t), Z(0) = z0, B =

(
λA A
0 −β1N

)
, G =

(
0 0
0 σ1N

)
with generator Lf (z) =

∑2N
k=1(Bz)j

∂f (z)
∂zj

+ 1
2

∑2N
k,j=1(GG

⊤)kj
∂2 f (z)
∂zk∂zj

Sato, 1984

Noise-induced stop-and-go traffic dynamics — 18.02.2025, Forschungszentrum Juelich, Germany 17/29

https://epubs.siam.org/doi/abs/10.1137/20M1315567
https://core.ac.uk/download/pdf/82575793.pdf


Invariant distribution of the system on a torus
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

ẋk ẋk+1

∆xk = xk+1 − xk

Ring of length L N agents
Agent k Agent k + 1

▶ Differential form for the differences yk = ∆xk − L/N to the homogeneous solution

dY (t) =
(
λAY (t) + AΞ(t)

)
dt, A =

−1 1
. . .

. . .

1 −1 1


▶ Z := (Y ,Ξ) is a Markov process in RN × RN (Ornstein-Uhlenbeck and Feller process)

dZ(t) = BZ(t)dt + GdW (t), Z(0) = z0, B =

(
λA A
0 −β1N

)
, G =

(
0 0
0 σ1N

)
with generator Lf (z) =

∑2N
k=1(Bz)j

∂f (z)
∂zj

+ 1
2

∑2N
k,j=1(GG

⊤)kj
∂2 f (z)
∂zk∂zj

Sato, 1984

Noise-induced stop-and-go traffic dynamics — 18.02.2025, Forschungszentrum Juelich, Germany 17/29

https://epubs.siam.org/doi/abs/10.1137/20M1315567
https://core.ac.uk/download/pdf/82575793.pdf


Invariant distribution of the system on a torus
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

▶ Differential form for the differences yk = ∆xk − L/N to the homogeneous solution

dY (t) =
(
λAY (t) + AΞ(t)

)
dt, A =

−1 1
. . .

. . .

1 −1 1


▶ Z := (Y ,Ξ) is a Markov process in RN × RN (Ornstein-Uhlenbeck and Feller process)

dZ(t) = BZ(t)dt + GdW (t), Z(0) = z0, B =

(
λA A
0 −β1N

)
, G =

(
0 0
0 σ1N

)
with generator Lf (z) =

∑2N
k=1(Bz)j

∂f (z)
∂zj

+ 1
2

∑2N
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∂2 f (z)
∂zk∂zj

Sato, 1984

Theorem It holds Z(t) → Z(∞) as t → ∞ in law, where Z(∞) is a Gaussian random variable

on R2N with mean zero and covariance matrix

Σ(∞) =
∫∞
0

etBGG⊤etB
⊤
dt

Noise-induced stop-and-go traffic dynamics — 18.02.2025, Forschungszentrum Juelich, Germany 17/29

https://epubs.siam.org/doi/abs/10.1137/20M1315567
https://core.ac.uk/download/pdf/82575793.pdf


Correlation and autocorrelation
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

▶ Asymptotic covariance of the spacing of an agent k to the spacing of the agent k + j ,
with γn = exp(i2πn/N)

covj (0) =
σ2

2βN

N−1∑
n=1

γ j
n

λ − β − λγn

(
(1 − γn)

2

λ − (λ + β)γn
−

2β

λ(λ + β − λγn)

)

▶ Asymptotic autocovariance at time τ ≥ 0

cov0(τ) =
σ2

2βN

N−1∑
n=1

1

λ − β − λγn

(
e−βτ (1 − γn)

2

λ − (λ + β)γn
−

2βe−λ(1−γn)τ

λ(λ + β − λγn)

)
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Correlation and autocorrelation at the limit N, L → ∞
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

▶ Asymptotic correlation of the spacing in stationary state for the hydrodynamical limit
N, L → ∞ with L/N constant

cor
∞
j (0) =

1

2

(
λ

λ + β

)j

▶ Asymptotic autocorrelation at time τ ≥ 0 : cor
∞
0 (τ) =

λe−βτ − βe−λτ

λ − β
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Extended model with discrete gradient in space

▶ The noise in the Ornstein-Uhlenbeck model is independent from the dynamics.

In addition, the model is unconditionally stable.

▶ Extended model: Coupling of the noise to the spacing difference with the
predecessor (discrete gradient in space){

dxk (t) = λ
(
xk+1(t)− xk (t)− ℓ

)
dt + εk (t)dt

dεk (t) = −γ(∆xk+1(t)−∆xk (t))− βεk (t)dt + σdWk (t)
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Stability analysis

▶ Assume β, λ > 0, the exact string stability condition is

2γ
[
λ(λ+ β)(1− cl )

2 − β2cl
]
+ βλ

[
2λ(1− cl )(λ+ β) + β2

]
− 4γ(1− c2l )

[
γ(1− cl ) + βλ

]
> 0 ∀l = 1, . . . , ⌈N/2⌉, cl = cos(2πl/N)

▶ In the thermodynamic limit for which N, L → ∞ with N/L constant, the
condition for the longest wavelength l = 1 is

βλ− 2γ > 0

▶ The condition for the shortest wavelength l = N/2 is

βλ+ 2γ > 0

▶ Sufficient linear stability condition: β, λ > 0 and −βλ < 2γ < βλ

The condition systematically holds for γ = 0 (initial OU model).
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Examples of trajectories
Simulation results with 50 agents, T = 1, β = 0.2, σ = 0.05 |γ⋆| ≈ 0.1283
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Autocorrelation of the speed
Simulation results with 50 agents, T = 1, β = 0.2, σ = 0.05 |γ⋆| ≈ 0.1283
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Nonlinear car-following models

▶ Both linear stochastic models based on the Ornstein-Uhlenbeck process can
describe qualitatively stop-and-go waves observed in pedestrians dynamics

– Evanescent waves for the unconditionally stable OU model

– Subcritical instability for the OU model including a gradient in space

▶ These stochastic models are linear and ergodic1: they do not recapture the
phase transition observed in vehicular dynamics

– White noise cannot influence the stability properties of linear models

▶ What about nonlinear car-following models?

Can the stability properties and long-term behavior of nonlinear models be
impacted by white noise?

→ Yes! c.f. Kapitza inverted pendulum

1They have a unique and stable (normal) stationary distribution
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Adaptive time gap model
Overdamped local and stable for any T , τ > 0

▶ The time gap is the distance gap divided by the speed

Tk (t) = [∆k (t)− ℓ]/vk (t) = gk (t)/vk (t), vk (t) = dxk (t)/dt.

→ The time it takes to collide at constant speed if the predecessor stops.

▶ Assume that the time gap Tk (t) is relaxed to a desired time gap parameter T

dTk (t) =
1

τ

[
T − Tk (t)

]
dt, T ≈ 1.2 s, τ ≈ 5 s

▶ Newtonian formulation: dvk =
1

Tk

[
λ (gk − Tvk ) + ∆vk
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where Tε is a bounded molifier of the time gap and Wk are independent
standard Brownian motions with volatility σ.
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Phase transition as the noise volatility increases
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Figure: The curves are Monte Carlo averages, while the areas show the min/max range.
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Phase diagram
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Figure: Phase diagram of the stochastic ATG model in the (L/N, 1/σ)-space.
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Noise-induced stop-and-go
Summary

Stochastic oscillation
Damped oscillation maintained

by the perturbations

ε

Steady state

Linear framework

Stable

▶ Stochastic oscillation: Oscillation of the system at its own deterministic frequency
(longest wavelength) due to the stochastic perturbations

→ Evanescent (unstable) stop-and-go waves with no phase transition
(linear ergodic framework with unique stationary distribution)

→ Subcritical instability: wave amplification near the critical linear instability setting

▶ Phase transition: Nonlinear models with unstable uniform equilibrium solution

→ Delay-induced (classic): Linear instability – Stop-and-go for fine tuning of the
parameters: linearly unstable dynamics hard to control

→ Noise-induced: Nonlinear instability for large perturbations – Unexpected results: the
deterministic model is unconditionally deterministically stable

▶ Linear stability not sufficient to control stop-and-go dynamics in stochastic systems
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