INTERINSTITUTIONAL RESEARCH DAY ON CROWD MANAGEMENT

Forschungszentrum Juelich, Germany - February 18, 2025

Noise-induced stop-and-go dynamics: Modelling and control

Raphael Korbmacher¹ & Antoine Tordeux¹
DFG Research Grant *SmartACC* (Gepris 546728715)

Joint works with: Mohcine Chraibi, Jakob Cordes, Armin Seyfried² Andreas Schadschneider³, Oscar Dufour, Alexandre Nicolas, David Rodney⁴

 $^1\mathrm{Bergische}$ Universität Wuppertal $^2\mathrm{Forschungszentrum}$ Jülich $^3\mathrm{Universität}$ zu Köln (Germany) $^4\mathrm{Universit\acute{e}}$ Claude Bernard Lyon 1 and CNRS (France)

Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model
Noise-induced subcritical instability

Noise-induced nonlinear instability

Summary

Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model Noise-induced subcritical instability Noise-induced nonlinear instability

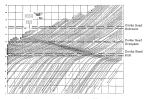
Summar

Stop-and-go dynamics in human-driven flows

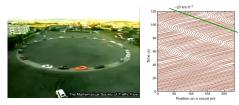
 Pedestrian, bicycle and car single-file motions tend to describe stop-and-go dynamics for congested density levels

- ► Succession of braking (shock) and acceleration (rarefaction) sequences
 - → Accordion traffic
- ► Self-organized collective phenomenon
- Besides its scientific interest, stop-and-go waves have negative impact on safety, comfort and environment
- Still not well understood, notably for adaptive cruise control (ACC) advanced driver-assistance systems

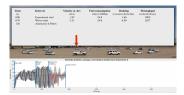
Stop-and-go waves in traffic flow



J Treiterer: Investigation of traffic dynamics by aerial photogrammetry techniques EES-278 Final Rpt, 1975



Y Sugiyama et al.: Traffic jams without bottlenecks New J Phys, 10:033001, 2008*

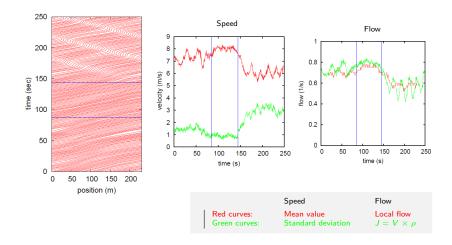


RE Stern et al. Dissipation of stop-and-go waves via control of autonomous vehicles Transp Res C-Emerg 89:205, 2018*

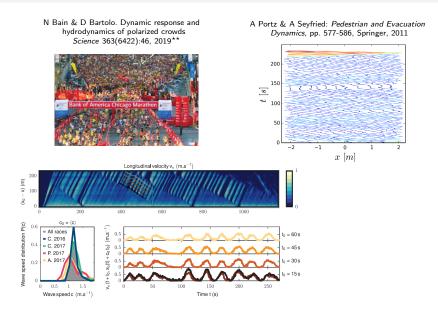
www.trafficforum.org*

Observation of metastability and phase transition

A Schadschneider et al. Stochastic Transport in Complex Systems, Springer, 2010.



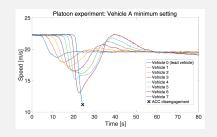
Stop-and-go in pedestrian dynamics



Are commercially implemented adaptive cruise control systems stable?

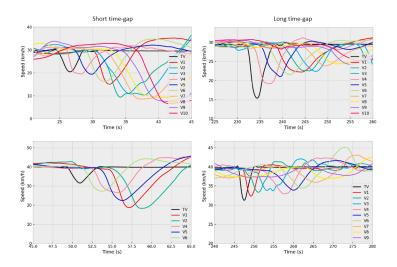
G Gunter et al. IEEE Trans Intell Transp Sys 22(11):6992, 2020

- Experimental test with eight 2018 model year ACC equipped vehicles
- ► Initial disturbance of 10 km/h



Further experiments with ACC systems

M Makridis et al. OpenACC: An open database of car-following experiments to study the properties of commercial ACC systems TRC 125:103047, 2021



Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model Noise-induced subcritical instability Noise-induced nonlinear instability

Summar

Stop-and-go dynamics in deterministic traffic models

 Stop-and-go by means of string instability of the homogeneous configurations

- Examples
 - Delayed 1st order model by Newell (1961)

$$\dot{x}_k(t+\tau) = V(x_{k+1}(t)-x_k(t))$$

2nd order OVM by Bando et al. (1995)

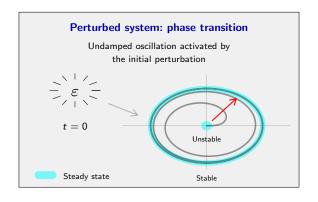
$$\ddot{x}_k(t) = \frac{1}{\tau} \left(V(x_{k+1}(t) - x_k(t)) - \dot{x}_k(t) \right)$$

ightarrow Unstable if inertia au exceeds critical value:

$$\tau > (2V')^{-1} = T/2$$

- ▶ Unstable models may have periodic solutions (limit-cycle) with stop-and-go waves for nonlinear models and fine tuning of the parameters
 - Phase transition from uniform equilibrium to oscillating dynamics

Stop-and-go dynamics in deterministic traffic models



Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model Noise-induced subcritical instability Noise-induced nonlinear instability

Summar

Noise-induced stop-and-go dynamics

- Stop-and-go dynamics in deterministic models results from inertia, nonlinear dynamics, linear instability phenomena (metastability), and phase transition
 - Linear instability compensated by nonlinear mechanisms: sensitivity to non-linearity
 - Not generic: Require fine-tuning of the parameters

- Stochastic cellular automata models have shown in the 1990's that noise effects can initiate stop-and-go dynamics
 - K Nagel & M Schreckenberg. A cellular automaton model for freeway traffic. J Phys I 2:2221, 1992
 - R Barlovic, A Schadschneider & M Schreckenberg. Metastable states in cellular automata for Traffic Flow. Eur Phys J B 5:793, 1998

NaSch J Phys 1 2:2221, 1992

 Noise kick the system out of the steady state by making it stochastic periodic (e.g. oscillating autocorrelation functions)

Noise-induced stop-and-go dynamics

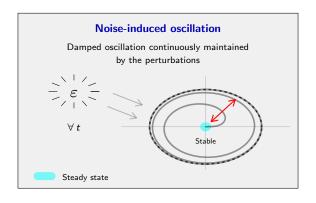
- Stop-and-go dynamics in deterministic models results from inertia, nonlinear dynamics, linear instability phenomena (metastability), and phase transition
 - Linear instability compensated by nonlinear mechanisms: sensitivity to non-linearity
 - Not generic: Require fine-tuning of the parameters

- Stochastic cellular automata models have shown in the 1990's that noise effects can initiate stop-and-go dynamics
 - K Nagel & M Schreckenberg, A cellular automaton model for freeway traffic. J Phys I 2:2221, 1992
 - R Barlovic, A Schadschneider & M Schreckenberg. Metastable states in cellular automata for Traffic Flow. Eur Phys J B 5:793, 1998

NaSch J Phys I 2:2221, 1992

 Noise kick the system out of the steady state by making it stochastic periodic (e.g. oscillating autocorrelation functions)

Noise-induced stop-and-go dynamics



Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

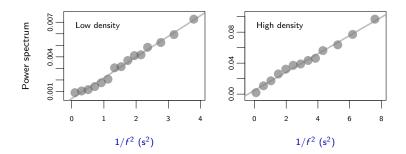
Ornstein-Uhlenbeck model

Noise-induced subcritical instability
Noise-induced nonlinear instability

Summar

Nature of the noise in pedestrian speed sequences

Data: ped.fz-juelich.de/database



- Linear power spectrum (ACF Fourier transform) of pedestrian speed according to the inverse of squared frequency
- ► Characteristic of a **Brownian noise** (red noise) to the pedestrian speed

Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851

Linear model with additive noise given by the Ornstein-Uhlenbeck process

$$\begin{cases} dx_k(t) = \lambda(x_{k+1}(t) - x_k(t) - \ell)dt + \varepsilon_k(t)dt \\ d\varepsilon_k(t) = -\beta\varepsilon_k(t)dt + \sigma dW_k(t) \end{cases}$$

with $(W_k(t))_k$ independent Wiener processes (Brownian motions)

Parameters

Inverse of time gap Pedestrian size		
Noise amplitude Noise relaxation		

Estimates of the noise relaxation time $1/\beta \approx 5$ s is different from the relaxation or reaction time $\tau \approx 0.5$ s of deterministic models

Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851

Linear model with additive noise given by the Ornstein-Uhlenbeck process

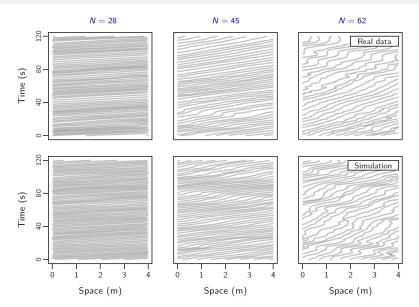
$$\begin{cases} dx_k(t) = \lambda(x_{k+1}(t) - x_k(t) - \ell)dt + \varepsilon_k(t)dt \\ d\varepsilon_k(t) = -\beta\varepsilon_k(t)dt + \sigma dW_k(t) \end{cases}$$

with $(W_k(t))_k$ independent Wiener processes (Brownian motions)

Estimates of the noise relaxation time $1/\beta \approx 5$ s is different from the relaxation or reaction time $\tau \approx 0.5$ s of deterministic models

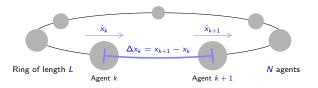
Model based on the Ornstein-Uhlenbeck process

A Tordeux, A Schadschneider (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A, 49(18):1851



Invariant distribution of the system on a torus

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870



Differential form for the differences $y_k = \Delta x_k - L/N$ to the homogeneous solution

$$dY(t) = (\lambda AY(t) + A\Xi(t))dt, \qquad A = \begin{bmatrix} -1 & 1 & & \\ & \ddots & \ddots & \\ 1 & & -1 & 1 \end{bmatrix}$$

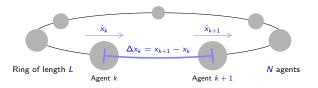
 $ightharpoonup Z := (Y, \Xi)$ is a Markov process in $\mathbb{R}^N \times \mathbb{R}^N$ (Ornstein-Uhlenbeck and Feller process)

$$dZ(t) = BZ(t)dt + GdW(t), \quad Z(0) = z_0, \quad B = \begin{pmatrix} \lambda A & A \\ 0 & -\beta 1_N \end{pmatrix}, \quad G = \begin{pmatrix} 0 & 0 \\ 0 & \sigma 1_N \end{pmatrix}$$

with generator
$$Lf(z) = \sum_{k=1}^{2N} (Bz)_j \frac{\partial f(z)}{\partial z_j} + \frac{1}{2} \sum_{k,j=1}^{2N} (GG^\top)_{kj} \frac{\partial^2 f(z)}{\partial z_k \partial z_j}$$
 Sato, 1984

Invariant distribution of the system on a torus

M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870



Differential form for the differences $y_k = \Delta x_k - L/N$ to the homogeneous solution

$$dY(t) = (\lambda AY(t) + A\Xi(t))dt, \qquad A = \begin{bmatrix} -1 & 1 & & \\ & \ddots & \ddots & \\ 1 & & -1 & 1 \end{bmatrix}$$

 $ightharpoonup Z := (Y, \Xi)$ is a Markov process in $\mathbb{R}^N \times \mathbb{R}^N$ (Ornstein-Uhlenbeck and Feller process)

$$dZ(t) = BZ(t)dt + GdW(t), \quad Z(0) = z_0, \quad B = \begin{pmatrix} \lambda A & A \\ 0 & -\beta 1_N \end{pmatrix}, \quad G = \begin{pmatrix} 0 & 0 \\ 0 & \sigma 1_N \end{pmatrix}$$

with generator
$$Lf(z) = \sum_{k=1}^{2N} (Bz)_j \frac{\partial f(z)}{\partial z_j} + \frac{1}{2} \sum_{k,j=1}^{2N} (GG^\top)_{kj} \frac{\partial^2 f(z)}{\partial z_k \partial z_j}$$
 Sato, 1984

▶ Differential form for the differences $y_k = \Delta x_k - L/N$ to the homogeneous solution

$$dY(t) = (\lambda AY(t) + A\Xi(t))dt, \qquad A = \begin{bmatrix} -1 & 1 & & \\ & \ddots & \ddots & \\ 1 & & -1 & 1 \end{bmatrix}$$

 $ightharpoonup Z := (Y, \Xi)$ is a Markov process in $\mathbb{R}^N \times \mathbb{R}^N$ (Ornstein-Uhlenbeck and Feller process)

$$\mathrm{d}Z(t) = BZ(t)\mathrm{d}t + G\mathrm{d}W(t), \quad Z(0) = z_0, \quad B = \begin{pmatrix} \lambda A & A \\ 0 & -\beta 1_N \end{pmatrix}, \quad G = \begin{pmatrix} 0 & 0 \\ 0 & \sigma 1_N \end{pmatrix}$$

with generator
$$Lf(z) = \sum_{k=1}^{2N} (Bz)_j \frac{\partial f(z)}{\partial z_j} + \frac{1}{2} \sum_{k,j=1}^{2N} (GG^\top)_{kj} \frac{\partial^2 f(z)}{\partial z_k \partial z_j}$$
 Sato, 1984

Theorem It holds $Z(t) \to Z(\infty)$ as $t \to \infty$ in law, where $Z(\infty)$ is a Gaussian random variable on \mathbb{R}^{2N} with mean zero and covariance matrix

$$\Sigma(\infty) = \int_0^\infty e^{tB} GG^\top e^{tB}^\top dt$$

Correlation and autocorrelation

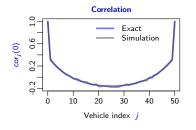
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

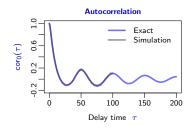
Asymptotic covariance of the spacing of an agent k to the spacing of the agent k+j, with $\gamma_n = \exp(i2\pi n/N)$

$$\mathsf{cov}_{j}(0) = \frac{\sigma^{2}}{2\beta N} \sum_{n=1}^{N-1} \frac{\gamma_{n}^{j}}{\lambda - \beta - \lambda \gamma_{n}} \left(\frac{(1 - \gamma_{n})^{2}}{\lambda - (\lambda + \beta)\gamma_{n}} - \frac{2\beta}{\lambda(\lambda + \beta - \lambda \gamma_{n})} \right)$$

▶ Asymptotic autocovariance at time $\tau \geq 0$

$$\mathsf{cov}_0(\tau) = \frac{\sigma^2}{2\beta N} \sum_{n=1}^{N-1} \frac{1}{\lambda - \beta - \lambda \gamma_n} \left(\frac{\mathrm{e}^{-\beta \tau} (1 - \gamma_n)^2}{\lambda - (\lambda + \beta) \gamma_n} - \frac{2\beta \mathrm{e}^{-\lambda (1 - \gamma_n) \tau}}{\lambda (\lambda + \beta - \lambda \gamma_n)} \right)$$





Correlation and autocorrelation at the limit $N, L \rightarrow \infty$

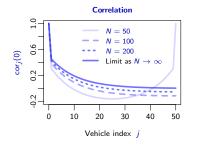
M Friesen et al. (2021) Spontaneous wave formation in stochastic self-driven particle systems. SIAM J Appl Math, 81(3), 853-870

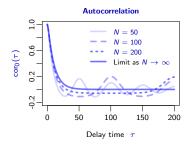
Asymptotic correlation of the spacing in stationary state for the hydrodynamical limit $N,L \to \infty$ with L/N constant

$$\operatorname{cor}_j^\infty(0) = rac{1}{2} \left(rac{\lambda}{\lambda + eta}
ight)^j$$

• Asymptotic autocorrelation at time $\tau \geq 0$:

$$\operatorname{cor}_0^\infty(au) = rac{\lambda e^{-eta au} - eta e^{-\lambda au}}{\lambda - eta}$$





Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Uhlenbeck model

Noise-induced subcritical instability

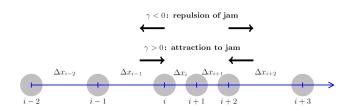
Noise-induced nonlinear instability

Summar

Extended model with discrete gradient in space

- The noise in the Ornstein-Uhlenbeck model is independent from the dynamics. In addition, the model is unconditionally stable.
- Extended model: Coupling of the noise to the spacing difference with the predecessor (discrete gradient in space)

$$\begin{cases} dx_k(t) = \lambda(x_{k+1}(t) - x_k(t) - \ell)dt + \varepsilon_k(t)dt \\ d\varepsilon_k(t) = -\gamma(\Delta x_{k+1}(t) - \Delta x_k(t)) - \beta\varepsilon_k(t)dt + \sigma dW_k(t) \end{cases}$$



Stability analysis

▶ Assume β , λ > 0, the exact string stability condition is

$$\begin{split} & 2\gamma\big[\lambda(\lambda+\beta)(1-c_l)^2-\beta^2c_l\big]+\beta\lambda\big[2\lambda(1-c_l)(\lambda+\beta)+\beta^2\big]\\ & -4\gamma(1-c_l^2)\big[\gamma(1-c_l)+\beta\lambda\big]>0 & \forall l=1,\ldots,\lceil N/2\rceil, \ c_l=\cos(2\pi l/N) \end{split}$$

▶ In the thermodynamic limit for which $N, L \rightarrow \infty$ with N/L constant, the condition for the longest wavelength I = 1 is

$$\beta\lambda - 2\gamma > 0$$

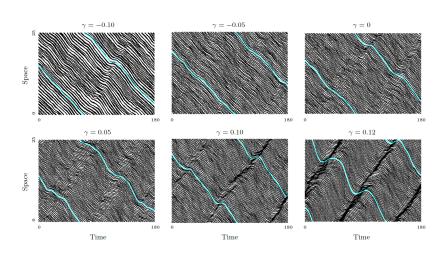
▶ The condition for the shortest wavelength I = N/2 is

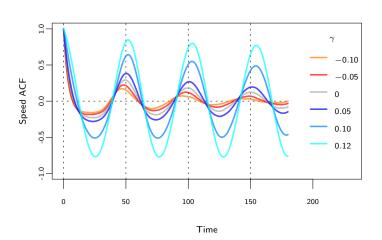
$$\beta\lambda + 2\gamma > 0$$

► Sufficient linear stability condition:

$$\beta, \lambda > 0$$
 and $-\beta\lambda < 2\gamma < \beta\lambda$

The condition systematically holds for $\gamma = 0$ (initial OU model).





Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

Ornstein-Unlenbeck model
Noise-induced subcritical instability

Noise-induced nonlinear instability

Summar

Nonlinear car-following models

- Both linear stochastic models based on the Ornstein-Uhlenbeck process can describe qualitatively stop-and-go waves observed in pedestrians dynamics
 - Evanescent waves for the unconditionally stable OU model
 - Subcritical instability for the OU model including a gradient in space
- ► These stochastic models are linear and ergodic¹: they do not recapture the phase transition observed in vehicular dynamics
 - White noise cannot influence the stability properties of linear models

► What about nonlinear car-following models?

Can the stability properties and long-term behavior of nonlinear models be impacted by white noise?

→ Yes! c.f. Kapitza inverted pendulum

¹They have a unique and stable (normal) stationary distribution

Nonlinear car-following models

- Both linear stochastic models based on the Ornstein-Uhlenbeck process can describe qualitatively stop-and-go waves observed in pedestrians dynamics
 - Evanescent waves for the unconditionally stable OU model
 - Subcritical instability for the OU model including a gradient in space
- ► These stochastic models are linear and ergodic¹: they do not recapture the phase transition observed in vehicular dynamics
 - White noise cannot influence the stability properties of linear models

► What about nonlinear car-following models?

Can the stability properties and long-term behavior of nonlinear models be impacted by white noise?

 $\rightarrow \ \ \text{Yes! c.f. Kapitza inverted pendulum}$

¹They have a unique and stable (normal) stationary distribution

▶ The time gap is the distance gap divided by the speed

$$T_k(t) = [\Delta_k(t) - \ell]/v_k(t) = g_k(t)/v_k(t), \qquad v_k(t) = \mathrm{d}x_k(t)/\mathrm{d}t.$$

→ The time it takes to collide at constant speed if the predecessor stops.

lacktriangle Assume that the time gap $T_k(t)$ is relaxed to a desired time gap parameter T

$$\mathrm{d}T_k(t) = rac{1}{ au} ig[T - T_k(t)ig] \, \mathrm{d}t, \quad T pprox 1.2 \, \mathrm{s}, \;\; au pprox 5 \, \mathrm{s}$$

Newtonian formulation:

$$dv_k = \frac{1}{T_k} \left[\lambda \left(g_k - T v_k \right) + \Delta v_k \right] dt$$

► Stochastic formulation:

$$dv_k = \frac{\lambda (g_k - Iv_k) + \Delta v_k}{T_{\varepsilon}(\Delta x_k, v_k)} dt + \sigma dW_n$$

where T_{ε} is a bounded molifier of the time gap and W_k are independent standard Brownian motions with volatility σ .

▶ The time gap is the distance gap divided by the speed

$$T_k(t) = [\Delta_k(t) - \ell]/v_k(t) = g_k(t)/v_k(t), \qquad v_k(t) = \mathrm{d}x_k(t)/\mathrm{d}t.$$

→ The time it takes to collide at constant speed if the predecessor stops.

Assume that the time gap $T_k(t)$ is relaxed to a desired time gap parameter T

$$\mathrm{d}T_k(t) = \frac{1}{\tau} \big[T - T_k(t) \big] \, \mathrm{d}t, \quad T pprox 1.2 \, \mathrm{s}, \quad \tau pprox 5 \, \mathrm{s}$$

- Newtonian formulation: $\mathrm{d}v_k = \frac{1}{T_k} \left[\lambda \left(g_k T v_k \right) + \Delta v_k \right] \mathrm{d}t$
- ► Stochastic formulation: $\mathrm{d}v_k = \frac{\lambda \left(g_k Tv_k\right) + \Delta v_k}{T_\varepsilon \left(\Delta x_k, v_k\right)} \, \mathrm{d}t + \sigma \mathrm{d}W_n$

where $\mathcal{T}_{\varepsilon}$ is a bounded molifier of the time gap and W_k are independent standard Brownian motions with volatility σ .

Phase transition as the noise volatility increases

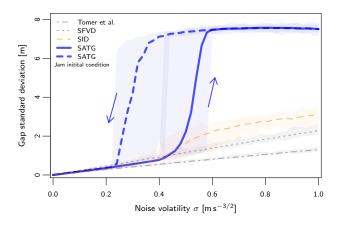


Figure: The curves are Monte Carlo averages, while the areas show the min/max range.

Phase diagram

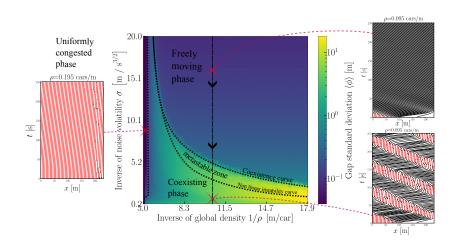


Figure: Phase diagram of the stochastic ATG model in the $(L/N,1/\sigma)$ -space.

Stop-and-go dynamics in human-driven flows

Delay-induced stop-and-go dynamics

Noise-induced stop-and-go dynamics

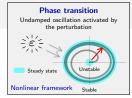
Ornstein-Uhlenbeck model Noise-induced subcritical instability Noise-induced nonlinear instability

Summary

Noise-induced stop-and-go Summary

- ► Stochastic oscillation: Oscillation of the system at its own deterministic frequency (longest wavelength) due to the stochastic perturbations
 - ightarrow Evanescent (unstable) stop-and-go waves with **no phase transition** (linear ergodic framework with unique stationary distribution)
 - → Subcritical instability: wave amplification near the critical linear instability setting
- Phase transition: Nonlinear models with unstable uniform equilibrium solution
 - ightarrow Delay-induced (classic): Linear instability Stop-and-go for fine tuning of the parameters: linearly unstable dynamics hard to control
 - ightarrow Noise-induced: Nonlinear instability for large perturbations Unexpected results: the deterministic model is unconditionally deterministically stable
- Linear stability not sufficient to control stop-and-go dynamics in stochastic systems

Noise-induced stop-and-go summary



- ► Stochastic oscillation: Oscillation of the system at its own deterministic frequency (longest wavelength) due to the stochastic perturbations
 - → Evanescent (unstable) stop-and-go waves with **no phase transition** (linear ergodic framework with unique stationary distribution)
 - ightarrow Subcritical instability: wave amplification near the critical linear instability setting
- ▶ Phase transition: Nonlinear models with unstable uniform equilibrium solution
 - → Delay-induced (classic): Linear instability Stop-and-go for fine tuning of the parameters: linearly unstable dynamics hard to control
 - \rightarrow Noise-induced: Nonlinear instability for large perturbations Unexpected results: the deterministic model is unconditionally deterministically stable
- Linear stability not sufficient to control stop-and-go dynamics in stochastic systems

Many thanks for your kind attention!

Division for traffic safety and reliability University of Wuppertal

vzu.uni-wuppertal.de

