Estimation des émissions de polluants et de la consommation de carburant du trafic routier¹

Vincent AGUILÉRA — Antoine TORDEUX

LABORATOIRE VILLE MOBILITÉ TRANSPORT (LVMT)
Université Paris-Est — École des Ponts et Chaussées — IFSTTAR

11ème séminaire francophone est-ouest de socio-économie des transports

Les 24 et 25 mai 2012, à Karlsruhe

¹Recherche financée en partie par la chaire **VINCI / ParisTech** 8L1142 intitulée «Éco-Conception des ensembles bâtis et des infrastructures»

Introduction

Objectif

- Le LaDTA est un modèle d'affectation et d'écoulement du trafic routier sur un réseau développé au LVMT
 - Modèle agrégé : les voies de circulation sont des arcs et les intersections sont des noueuds
 - Calcul des débits et vitesses moyennes par arc en temps continu, à partir de matrices Origine/Destination
- ▶ Notre objectif est de développer un modèle d'estimation des émissions de polluants (en sortie d'échappement) et de la consommation de carburant qui soit adapté à LaDTA
 - Exploration des modèles d'émission
- ▶ À terme, le but est d'évaluer l'impact du trafic routier sur la qualité de l'air (ex: ZAPA en lle de France) à l'aide d'un modèle de dispersion des polluants développé au CEREA

- Estimation en deux étapes :
 - 1. Estimation de la **composition du flux** (statique)
 - 2. Estimation du facteur d'émission, par classe de véhicule (fonction de la dynamique du flux)
- ► Il existe dans la littérature différentes modélisations des facteurs d'émission allant :
 - Des modèles macroscopiques, fondés sur la vitesse moyenne («stabilisée», i.e. le long d'un trajet suffisamment long, ex: COPERT²),
 - Aux modèles microscopiques (modaux), fondés sur des performances instantanées des véhicules (ex: CMEM³)

²COPERT 4, Ntziachristos & Samaras, 2009; ARTEMIS, Boulter and McCrae, 2007

³CMEM, Barth *et al.*, 1996; VT-MICRO, Rakha *et al.*, 2004

Problématique et plan de la présentation

- ► Les modèles microscopiques des facteurs d'émission nécessitent des performances instantanées peu accessibles
- Les modèles macroscopiques sont opérationnels (à des échelles importantes) mais peu sensibles aux aspects fins des écoulements du trafic (en congestion)
- L'utilisation de la distribution des vitesses des véhicules permet d'obtenir des estimations plus consistantes des modèles macroscopiques⁴

Plan de la présentation :

- Propriétés du trafic
- Définition d'un modèle d'émission
- · Comparaison des estimations à des modèles connus

⁴Smit et al., 2008. Atmosph. Env. 42(5):916-926

Propriétés observées du trafic

- Distinction de deux états de trafic :
 - Un régime dit libre (à faible densité), où les vitesses des véhicules sont globalement constantes
 - Un régime dit congestionné, où les vitesses varient (file d'attente, trafic en accordéon)
- Plus précisément, les distributions des vitesses sont uni-modales en régime libre et bi-modales en régime congestionné⁵
 - → Formation de files d'attente aux intersections⁶
 - → Phénomène d'ondes cinématiques induit deux modes de vitesse aux véhicules en file⁷

⁵Treiber et al., 2010. Transp. Res. B 44(8-9):983–1000

⁶Herman & Prigogine, 1979, Science, 204(4389):148–151

⁷Manhke et al., 2008. Physics of stochastic process. Wiley

Exemples de trajectoires simulées sur un cercle

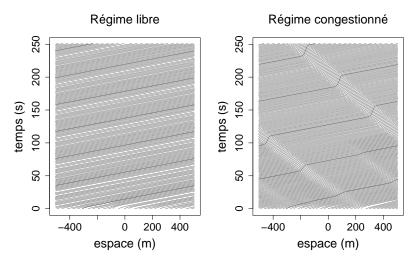
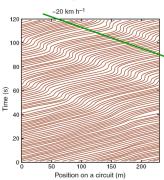



Figure 1: Trajectoires sur un cercle selon deux niveaux de densité, simulation d'un modèle microscopique de trafic

Trajectoires réelles sur un cercle⁸

(movie)

Diagramme d'espacetemps associé7

Diagramme fondamental

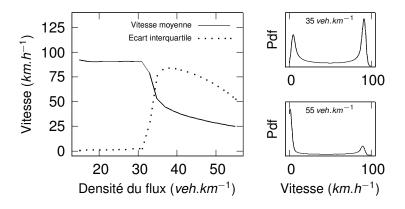


Figure 2: Vitesse moyenne et écart inter-quartile selon le niveau de densité du flux et exemples de distributions des vitesses (simulation)

Définition du modèle BIMODEM

- Modèle d'estimation du facteur d'émission $\tilde{\text{EF}}$ (en [g/km]) d'un polluant ou de la consommation de carburant fondé sur la vitesse moyenne
- Hypothèse d'une distribution bi-modale des vitesses :

$$\widetilde{\mathsf{EF}}(v,\underline{v},\overline{v}) = \lambda \, \mathsf{EF}(\overline{v}) + (1-\lambda) \, \mathsf{EF}(\underline{v}), \quad \lambda = \frac{v-\underline{v}}{\overline{v}-\underline{v}}$$

avec EF un facteur d'émission fonction de la vitesse, v la vitesse moyenne, $\underline{v} \leq \overline{v}$ les vitesses modales à calibrer

- v est la vitesse maximale autorisée, de sorte que la distribution des vitesses est uni-modale en régime libre
- <u>v</u> est une vitesse constante relativement faible, caractéristique du trafic en congestion

- ► Le modèle BIMODEM proposé est macroscopique, au sens où il est fondé sur la vitesse moyenne
- ▶ Une connaissance a priori du comportement des flux de trafic est introduite avec la distribution bi-modale des vitesses
- Approche macroscopique intermédiaire entre les modèles fondés sur la vitesse moyenne, sur une classification des états et sur une distribution des vitesses
- Description plus précise de la dynamique du trafic qu'une simple vitesse moyenne, au prix de deux paramètres :
 - L'un lié à l'infrastructure (la vitesse maximale autorisée)
 - Le second est caractéristique du trafic en congestion et est à calibrer

Évaluation du modèle

- ► Évaluation des estimations de la consommation de carburant⁹ sur des trajectoires :
 - Simulées, à l'aide d'un modèle de trafic microscopique
 - Réelles, obtenues par traitement vidéo
- ▶ Utilisation du modèle CMEM comme estimation de référence et de la fonction de facteur d'émission COPERT 4
- Calibrage des vitesses modales du modèle :
 - Vitesse maximale \overline{v} : donnée par l'infrastructure
 - Vitesse minimale $\underline{v} = 20 \, km/h$

 $^{^9}$ d'automobiles essence EURO 3 de cylindrée comprise entre 1.4 et 2 ℓ

- Obtenues à l'aide d'un modèle microscopique de trafic¹⁰
- Véhicules en file sur un cercle observés en régime stationnaire selon :
 - Le niveau de densité du flux (variant de 15 à 55 veh/km)
 - La vitesse maximale notée θ (égale à 90 et 125 km/h)
- Distinction de deux états de trafic :
 - Un régime libre où les vitesses des véhicules sont constantes (égales à la vitesse maximale)
 - Un régime congestionné où les vitesses des véhicules varient (présence d'ondes cinématiques)

¹⁰Lassarre et al., 2010 Transp. Res. B 44(8-9):1115-1131

Estimations sur les trajectoires simulées

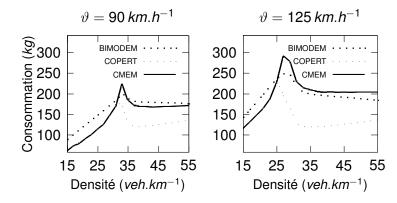


Figure 3: Estimation de la consommation de carburant durant une heure sur une voie d'un kilomètre selon le niveau de densité du flux

Utilisation de trajectoires réelles

Données issues du projet américain NGSIM¹¹

- 45 mn d'observation, portion de 640 m, 6101 trajectoires
- Contexte congestionné (vitesse moyenne ≈ 33.2 km/h)

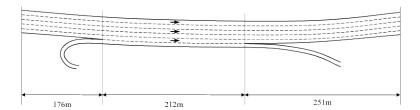


Figure 4: Portion observée : autoroute américaines à 5 voies comportant une voie d'insertion

¹¹Échantillon US101 – FHWA. US Department of Transportation, Next Generation SIMulation, 2008. URL http://ngsim-community.org/.

Consommation de carburant par trajectoire

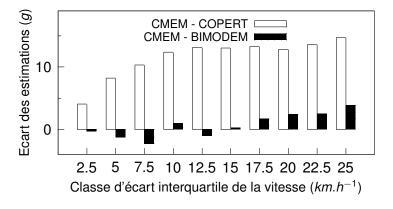


Figure 5: Différences des estimations de la **consommation de carburant** par **trajectoire** et classe d'**écart interquartile** de vitesse Estim. totale : CMEM 384 *kg*, COPERT 304 *kg*, BIMODEM 376 *kg*

Conclusions:

- Les modèles d'émission fondés sur la vitesse moyenne ne sont pas toujours pertinents en congestion lorsqu'ils sont utilisés à des échelles locales
- Supposer que la vitesse moyenne est un mélange de deux modes apparaît alors être un compromis raisonnable

Perspectives de travail :

- Développer des méthodes d'estimation des paramètres du modèle (statistique ou par analyse de modèles de trafic)
- Confronter les estimations à des mesures réelles et évaluer l'apport de la démarche ainsi que son échelle d'application

Merci de votre attention!

Beste Grüsse!