Traffic flow models by Markovian jump process

Antoine **TORDEUX**

Université PARIS-EST — INRETS

joint work with

Michel ROUSSIGNOL (Université PARIS-EST) Sylvain LASSARRE (INRETS)

UNIVERSITÄT ZU KÖLN, INSTITUT FÜR THEORETISCHE PHYSIK

Traffic flow models by Markovian jump process

 \rightarrow Extracted from interacting particles systems widely studied in Probability and Theorical Physics (stationary state form and its stability, simulation methods)

 \rightarrow A process describes the evolution in continuous time of particles jumping on a set of sites according to interaction rules

 $\rightarrow\,$ The systems can be investigated analytically with probabilistic tools and are easy to be simulated

 \rightarrow The Markovian models represent an stochastic alternative to traffic flow modelling by differential system and an extension in continuous time of cellular automata approach

Presentation main lines

- 1. Principal caracteristics of a Markovian jump process
- 2. A microscopic traffic flow model defined on a discrete space by a *zero-range* process
- 3. A mesoscopic traffic flow model defined on a discrete space by a *misanthrope* process
- 4. Conclusion and working prospects

Main caracteristics of a Markovian jump process

 $(X_t, t \in \mathbb{R}^+)$ defined on E is a homogeneous Markovian jump process if, for all *n*, all $0 \le t_0 < t_1, \ldots < t_{n+1}$ and all $\eta_0, \ldots, \eta_{n+1} \in \mathsf{E}$ such as $\mathbb{P}(X_{t_0} = \eta_0, \ldots, X_{t_n} = \eta_n) \ne 0$, we have :

$$\mathbb{P}(X_{t_{n+1}} = \eta_{n+1} / X_{t_0} = \eta_0, \dots, X_{t_n} = \eta_n) = \mathbb{P}(X_{t_{n+1}} = \eta_{n+1} / X_{t_n} = \eta_n)$$
$$= \mathcal{P}_{t_{n+1} - t_n}(\eta_n, \eta_{n+1})$$

→ \mathcal{P}_t is called transition matrix of the Markovian process (X_t) when E is finite or even only countable. The matrix are Markovian *i.e.* for all $\eta, \xi \in E$:

$$\mathcal{P}_t(\eta,\xi) \geq \mathsf{0}, \qquad \sum_{k\in\mathsf{E}}\mathcal{P}_t(\eta,k) = 1$$

Main caracteristics of a Markovian jump process

 $(X_t, t \in \mathbb{R}^+)$ is caracterised by its generator matrix L defined by :

$$\forall \eta \in \mathsf{E}, \quad \forall \xi \neq \eta \quad \mathsf{L}(\eta, \xi) = \frac{\mathrm{d}\mathcal{P}_t}{\mathrm{d}t} \Big|_{t=0} (\eta, \xi), \quad \mathsf{L}(\eta, \eta) = -\sum_{\xi} \mathsf{L}(\eta, \xi)$$

→ When E is *irreducible* (*i.e.* $\forall \eta, \xi, t, \mathcal{P}_t(\eta, \xi) > 0$) *reccurente* (*i.e.* for all $\eta \in \mathsf{E}$, leaving from η , the process will almost surely coming back in η), an invariante measure of the process ($X_t, t \in \mathbb{R}^+$), denoted π , is solution of the equation :

$$\pi \mathbf{L} = 0$$
 i.e. $\forall \eta \in \mathsf{E}$ $\sum_{\xi \neq \eta} \pi(\xi) \mathbf{L}(\xi, \eta) = \sum_{\xi \neq \eta} \pi(\eta) \mathbf{L}(\eta, \xi)$

→ A reversible measure μ , for which for all $\eta, \xi \in E$ $\mu(\eta) L(\eta, \xi) = \mu(\xi) L(\xi, \eta)$, is invariante

Table of contents

- 1. Principal caracteristics of a Markovian jump process
- 2. A microscopic traffic flow model defined on a discrete space by a *zero-range* process
- 3. A mesoscopic traffic flow model defined on a discrete space by a *misanthrope* process
- 4. Conclusion and working prospects

A microscopic traffic flow model by a zero-range process

- → Vehicles evolves on a lane divided into cell of length δ . We considere vehicles distance gap $(\eta_t(v), t \in \mathbb{R}^+, v \in \mathbb{Z})$
- \rightarrow The rate of jump b_{δ} of a vehicle x is a function of its distance gap :

$$b_{\delta}(\eta_t(x)) = \frac{1}{\delta} \mathscr{V}(\eta_t(x) \times \delta)$$

 $\mathscr V$ is a function of «targeted speed» depending on the distance gap

Targeted speed function parameter

Ones assumes the targeted speed function constant, equal to a desired speed denoted ϑ beyond an interaction distance \mathcal{D}

distance gap

Process generator

 $(\eta_t, t \in \mathbb{R}^+)$ is a zero-range process defined on $\mathsf{E} = \mathbb{N}^{\mathbb{Z}}$; \mathbb{Z} is the vehicle set, \mathbb{N} is the vehicles distance gap discretised in unit δ

 \rightarrow The process is caracterised by the generator L, defined for any function *f* by :

with
$$\begin{aligned} \mathsf{L}f(\eta) &= \sum_{x} b_{\delta}(\eta(x)) [f(\eta^{x}) - f(\eta)] \mathbb{1}_{\{\eta(x) > 0\}} \\ & \begin{cases} \eta^{x}(z) &= \eta(z) & \text{if } z \neq x \text{ and } z \neq x - 1 \\ \eta^{x}(x) &= \eta(x) - 1 \\ \eta^{x}(x-1) &= \eta(x-1) + 1 \end{cases} \end{aligned}$$

The jump rate only depends of the state of the departure site

Invariante distribution of the process on a infinite lane

 $(\eta_t, t \in \mathbb{R}^+)$ is a zero-range process defined on $\mathsf{E} = \mathbb{N}^{\mathbb{Z}}$ whose asymptotic distribution is known on a finite and infinite space (SPITZER 70, ANDJEL 82)

→ For the case of an infinite lane, the $(\eta(x), x \in \mathbb{Z})$ are independent, identically distributed according to :

$$\tilde{\pi}_{z}(m) = \begin{cases} z^{m} \Psi_{\delta}(m) / C_{\delta} & \text{if } 0 \le m < K \\ z^{m} \Psi_{\delta}(K-1) (\delta/\vartheta)^{m-K} / C_{\delta} & \text{if } m \ge K \end{cases}$$

with $K = D/\delta$, $\Psi_{\delta}(m) = \prod_{n=1}^{m} (b_{\delta}(n))^{-1}$ with $\Psi_{\delta}(0) = 1$, $C_{\delta} = \sum_{m=0}^{K-1} z^{m} \Psi_{\delta}(m) + \frac{z^{K} \Psi_{\delta}(K)}{1 - \delta z/\vartheta}$ and $z = \mathbb{E}b_{\delta}$ a parameter usually called *fugacity*

Distance gap distribution are uni-modal

 \rightarrow That traduct the absence of kinematic (*stop-and-go*) waves

espacement inter-véhiculaire

Calculus of performance indicators in stationary state

By construction of the model the mean speed is equal to $\mathcal{V} = \delta \times z$ \rightarrow Performance indicators depend of vehicles mean speed

The mean distance gap is deducted from the mean number of free cells in front :

$$\mathbb{E}\mathcal{D}_{\delta}(\mathcal{V}) = \frac{\delta}{C_{\delta}} \left(\sum_{m=0}^{K-1} m \prod_{n=1}^{m} \frac{\mathcal{V}}{\mathcal{V}(n\delta)} + \frac{K - 1 + \frac{1}{1 - \mathcal{V}/\vartheta}}{1 - \mathcal{V}/\vartheta} \prod_{n=1}^{K} \frac{\mathcal{V}}{\mathcal{V}(n\delta)} \right)$$

The flow density and flow volume are given by :

$$egin{array}{rcl} arrho_{\delta}(\mathcal{V}) &=& 1/(\mathbb{E}\mathcal{D}_{\delta}(\mathcal{V})+\ell) \ \mathcal{Q}_{\delta}(\mathcal{V}) &=& \mathcal{V}/(\mathbb{E}\mathcal{D}_{\delta}(\mathcal{V})+\ell) \end{array}$$

Calculus of performance indicators for the case $\delta \rightarrow 0$

The limit calculus $\delta \rightarrow 0$ allows to :

- Simplify the formulas;
- Evaluate the impact of the spatial discretisation

One shows that on $[0, \vartheta[, \mathbb{E}\mathcal{D}_{\delta}(\mathcal{V}) \to \mathscr{V}^{-1}(\mathcal{V})$ when $\delta \to 0$

By inversing the variables \mathcal{V} and ϱ , one shows that, when $\delta \rightarrow 0$:

$$egin{aligned} \mathcal{V}(arrho) &= \mathscr{V}\left(1/arrho-\ell
ight) \ \mathcal{Q}(arrho) &= arrho imes \mathscr{V}\left(1/arrho-\ell
ight). \end{aligned}$$

 $\rightarrow \rho^c = 1/(\mathcal{D} + \ell)$ is the critical density threshold beyond which vehicles mean speed become less that the desired speed

Study of the distance gap variance in stationary state

$$\mathbb{V}\mathcal{D}_{\delta}(z) = \delta^2 \left(\sum_m (ilde{\pi}_z(m))^2 - \left(\sum_m ilde{\pi}_z(m)
ight)^2
ight)$$

Distance gap variance gives use an indicator of vehicles repartition One show that :

$$\forall \, \mathcal{V} \in [0, \vartheta[, \qquad \lim_{\delta \to 0} \mathbb{V}\mathcal{D}_{\delta}(\mathcal{V}) = 0$$

 $\rightarrow\,$ This result and the previous expected value are obtained by showing that

$$\lim_{K \to \infty} \frac{\sum_{i=1}^{K-1} h\left(\frac{i}{K}\right) \prod_{j=1}^{i} \frac{g(d)}{g(j/K)}}{\sum_{i=1}^{K-1} \prod_{j=1}^{i} \frac{g(d)}{g(j/K)}} = h(d)$$

for all $d \in [0, 1]$ and under the asumptions $g \in C^1$ from [0, 1] to [0, 1] such as $0 < \alpha \le g'$ and *h* with finite growth

Mean performances in the stationary state

Introduction of a reaction time parameter T^r

 \rightarrow At the instant *t*, the jump rate of the vehicle *x* becomes $\frac{1}{\delta} \mathscr{V}(\delta \eta_{t-\mathcal{T}^r}(x))$ where the delayed distance gap $\delta \eta_{t-\mathcal{T}^r}(x)$ is approximated by :

$$\delta \times \eta_{t-\mathcal{T}'}(x) \approx \delta \eta_t(x) - \mathcal{T}'(\mathscr{V}(\delta \eta_t(x+1)) - \mathscr{V}(\delta \eta_t(x)))$$

 \rightarrow Process caracterised by the generator :

$$\mathsf{L}f(\eta) = \sum_{x} b_{\delta}(\eta(x), \eta(x+1)) [f(\eta^{x}) - f(\eta)] \mathbb{1}_{\{\eta(x) > 0\}}$$
with
$$\begin{cases} \eta^{x}(z) &= \eta(z) & \text{if } z \neq x \text{ and } z \neq x - 1 \\ \eta^{x}(x) &= \eta(x) - 1 \\ \eta^{x}(x-1) &= \eta(x-1) + 1 \end{cases}$$

Example of vehicles trajectories on a ring

 $T^r = 0$

 $T^r = 1 s$

space, m

space, m

Monte-Carlo simulations on a ring

Phase transition from homogeneous (uni-modal) to heterogeneous (bi-modal) state with \mathcal{T}^r (example $\vartheta = 40 \ m/s$, $\mathscr{V}(d) = d$)

 \rightarrow Condition observed : $\mathscr{V}' < 1/(2\mathcal{T}^r)$

Table of contents

- 1. Principal caracteristics of a Markovian jump process
- 2. A microscopic traffic flow model defined on a discrete space by a *zero-range* process
- 3. A mesoscopic traffic flow model defined on a discrete space by a *misanthrope* process
- 4. Conclusion and working prospects

A mesoscopic traffic flow model by a misanthrope process

→ We consider the evolution of vehicles number $(\eta_t(x), t \in \mathbb{R}^+, x \in \mathbb{Z})$ by section of length *D*

 \rightarrow The rate of jump of a vehicle from section x to section x + 1 is:

$$b(\eta(x), \eta(x+1)) = \min\left\{\Delta\left(\frac{\eta(x)}{D}\right), \Sigma\left(\frac{\eta(x+1)}{D}\right)\right\}$$

where Σ and Δ are respectively the function of supply and demand

Process generator

The jump rate function b is an increasing function of the vehicles number on the departure site and a decreasing function of the vehicles number on the arrival site

 \rightarrow ($\eta_t, t \in \mathbb{R}^+$) is a misanthrope process (COCOZZA 85)

 $\rightarrow\,$ Caracterised by the generator :

Invariante state of one section with open boundaries

The enter rate λ and the exit rate μ are defined by :

$$\lambda(n) = \min\left\{\alpha, \Sigma\left(\frac{n}{D}\right)\right\}$$
 and $\mu(n) = \min\left\{\Delta\left(\frac{n}{D}\right), \beta\right\}$

where α is a demand upstream and β a supply downstream; the demand and supply functions are linear by piece :

$$\Sigma\left(\frac{n}{D}\right) = \min\left\{\mathcal{Q}_{max}, a\left(\frac{n_{max}}{D} - \frac{n}{D}\right)\right\} \text{ and } \Delta\left(\frac{n}{D}\right) = \min\left\{b\frac{n}{D}, \mathcal{Q}_{max}\right\}$$

Stationary distribution of vehicles number on the section

Since the process in reversible, the invariante measure π of the vehicles number on the section is solution of the equation :

$$\pi(n-1)\lambda(n-1)=\pi(n)\mu(n)$$

One finds
$$\pi(n) = \pi(0) \prod_{i=1}^{n} \frac{\lambda(i-1)}{\mu(i)}, \pi(0) = \left(1 + \sum_{n=1}^{n} \prod_{i=1}^{n} \lambda(i-1)/\mu(i)\right)^{-1}$$

nb. veh/section

Product invariant distribution of a lane

To obtain a product invariant distribution, the jump rate function b has to satisfy the relations :

$$b(n,0) + \frac{b(1,n)}{b(n+1,0)} \frac{b(p,0)}{b(1,p-1)} b(n+1,p-1) = b(n,p) + b(p,0)$$

 \rightarrow Numerical examples present unreasonable aspects

Performances in stationary state on a ring

Stationary state performances of a lane with open boundaries

RIEMANN experiments

space, km

Towards the simulation of a network

Modelling of an intersection with multiple paths

Performances observed when $D \rightarrow \infty$:

Heterogeneous model
$$\begin{cases} q_d = \min \{ p_d \times \sum_i \alpha_i, \beta_d \} \\ Q = \sum_d q_d \end{cases}$$
FIFO model
$$\begin{cases} Q = \min_d \left\{ \sum_i \alpha_i, \frac{\beta_d}{p_d} \right\} \\ q_d = p_d Q \end{cases}$$

Towards the simulation of a network

Modelling of an intersection with a bottleneck

Performances observed when $D \rightarrow \infty$:

Heterogeneous model
$$\begin{cases} q_d = \min \left\{ p_d \times \min \left\{ \sum_i \alpha_i, \mathcal{Q}_{max}^0 \right\}, \beta_d \right\} \\ \mathcal{Q} = \sum_d q_d \\ FIFO \ model \end{cases} \begin{cases} \mathcal{Q} = \min_d \left\{ \sum_i \alpha_i, \mathcal{Q}_{max}^0, \frac{\beta_d}{p_d} \right\} \\ q_d = p_d \mathcal{Q} \end{cases}$$

Table of contents

- 1. Principal caracteristics of a Markovian jump process
- 2. A microscopic traffic flow model defined on a discrete space by a *zero-range* process
- 3. A mesoscopic traffic flow model defined on a discrete space by a *misanthrope* process
- 4. Conclusion and working prospects

Conclusion and working prospects

Conclusion

 $\rightarrow\,$ Markovian jump models can reproduce several traffic flow caracteristics

 \rightarrow They are polyvalent, easy to simulate and can be investigated analytically (at least in basic cases)

Working prospects

 \rightarrow Stationary state calculus using product and *n*-clusters forms

 $\rightarrow\,$ Explicite conditions on microscopic models parameters of the transition phase uni-modal / bi-modal states

 \rightarrow Study of a continuous space model using a *Totally Asymmetric* Random Average Process