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Traffic flow models by Markovian jump process

→ Extracted from interacting particles systems widely studied in
Probability and Theorical Physics (stationary state form and its
stability, simulation methods)

→ A process describes the evolution in continuous time of particles
jumping on a set of sites according to interaction rules

→ The systems can be investigated analytically with probabilistic
tools and are easy to be simulated

→ The Markovian models represent an stochastic alternative to
traffic flow modelling by differential system and an extension in
continuous time of cellular automata approach
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Main caracteristics of a Markovian jump process

(Xt , t ∈ R+) defined on E is a homogeneous Markovian jump process
if, for all n, all 0 ≤ t0 < t1, . . . < tn+1 and all η0, . . . , ηn+1 ∈ E such
as P(Xt0 = η0, . . . ,Xtn = ηn) 6= 0, we have :

P(Xtn+1
= ηn+1/Xt0 = η0, . . . ,Xtn = ηn) = P(Xtn+1

= ηn+1/Xtn = ηn)

= Ptn+1−tn(ηn, ηn+1)

→ Pt is called transition matrix of the Markovian process (Xt) when
E is finite or even only countable. The matrix are Markovian i.e. for
all η, ξ ∈ E :

Pt(η, ξ) ≥ 0,
∑
k∈E
Pt(η, k) = 1



Main caracteristics of a Markovian jump process

(Xt , t ∈ R+) is caracterised by its generator matrix L defined by :

∀η ∈ E, ∀ξ 6= η L(η, ξ) =
dPt
dt

∣∣∣∣
t=0

(η, ξ), L(η, η) = −
∑
ξ

L(η, ξ)

→ When E is irreducible (i.e. ∀η, ξ, t, Pt(η, ξ) > 0) reccurente (i.e.
for all η ∈ E, leaving from η, the process will almost surely coming
back in η), an invariante measure of the process (Xt , t ∈ R+),
denoted π, is solution of the equation :

πL = 0 i .e. ∀η ∈ E

∑
ξ 6=η

π(ξ)L(ξ, η) =
∑
ξ 6=η

π(η)L(η, ξ)

→ A reversible measure µ, for which for all η, ξ ∈ E

µ(η)L(η, ξ) = µ(ξ)L(ξ, η), is invariante
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A microscopic traffic flow model by a zero-range process

sites                                                                                                                                
      VEHICLES EVOLUTION
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→ Vehicles evolves on a lane divided into cell of length δ. We
considere vehicles distance gap (ηt(v), t ∈ R+, v ∈ Z)

→ The rate of jump bδ of a vehicle x is a function of its distance gap :

bδ(ηt(x)) =
1

δ
V (ηt(x)× δ)

V is a function of «targeted speed» depending on the distance gap



Targeted speed function parameter

Ones assumes the targeted speed function constant, equal to a desired
speed denoted ϑ beyond an interaction distance D
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Process generator

(ηt , t ∈ R+) is a zero-range process defined on E = NZ;
Z is the vehicle set, N is the vehicles distance gap discretised in unit δ

→ The process is caracterised by the generator L, defined for any
function f by :

Lf (η) =
∑
x

bδ(η(x))[f (ηx)− f (η)]1{η(x)>0}

with


ηx(z) = η(z) if z 6= x and z 6= x − 1

ηx(x) = η(x)− 1

ηx(x − 1) = η(x − 1) + 1

The jump rate only depends of the state of the departure site



Invariante distribution of the process on a infinite lane

(ηt , t ∈ R+) is a zero-range process defined on E = NZ whose
asymptotic distribution is known on a finite and infinite space
(SPITZER 70, ANDJEL 82)

→ For the case of an infinite lane, the (η(x), x ∈ Z) are independent,
identically distributed according to :

π̃z(m) =

{
zmΨδ(m)/Cδ if 0 ≤ m < K

zmΨδ(K − 1)(δ/ϑ)m−K/Cδ if m ≥ K

with K = D/δ, Ψδ(m) =
∏

m

n=1
(bδ(n))−1 with Ψδ(0) = 1,

Cδ =
∑

K−1
m=0

zmΨδ(m) + zKΨδ(K)
1−δz/ϑ and z = Ebδ a parameter usually

called fugacity



Distance gap distribution are uni-modal

→ That traduct the absence of kinematic (stop-and-go) waves
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Calculus of performance indicators in stationary state

By construction of the model the mean speed is equal to V = δ × z

→ Performance indicators depend of vehicles mean speed

The mean distance gap is deducted from the mean number of free
cells in front :

EDδ(V) =
δ

Cδ

(
K−1∑
m=0

m

m∏
n=1

V
V(nδ)

+
K − 1 + 1

1−V/ϑ

1− V/ϑ

K∏
n=1

V
V(nδ)

)

The flow density and flow volume are given by :

%δ(V) = 1/(EDδ(V) + `)

Qδ(V) = V/(EDδ(V) + `)



Calculus of performance indicators for the case δ→ 0

The limit calculus δ→ 0 allows to :
• Simplify the formulas;
• Evaluate the impact of the spatial discretisation

One shows that on [0, ϑ[, EDδ(V)→V −1(V) when δ→ 0

By inversing the variables V and %, one shows that, when δ→ 0 :

V(%) = V (1/%− `)

Q(%) = %× V (1/%− `) .

→ %c = 1/(D + `) is the critical density threshold beyond which
vehicles mean speed become less that the desired speed



Study of the distance gap variance in stationary state

VDδ(z) = δ2

∑
m

(π̃z(m))2 −

(∑
m

π̃z(m)

)2


Distance gap variance gives use an indicator of vehicles repartition

One show that :
∀V ∈ [0, ϑ[, lim

δ→0

VDδ(V) = 0

→ This result and the previous expected value are obtained by
showing that

lim
K→∞

∑K−1
i=1

h
(
i
K

)∏i
j=1

g(d)
g(j/K)∑K−1

i=1

∏i
j=1

g(d)
g(j/K)

= h(d)

for all d ∈ [0, 1] and under the asumptions g ∈ C 1 from [0, 1] to [0, 1]
such as 0 < α ≤ g ′ and h with finite growth



Mean performances in the stationary state
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Introduction of a reaction time parameter T r

→ At the instant t, the jump rate of the vehicle x becomes
1

δV (δηt−T r (x)) where the delayed distance gap δηt−T r (x) is
approximated by :

δ × ηt−T r (x) ≈ δηt(x)− T r (V (δηt(x + 1))− V (δηt(x)))

→ Process caracterised by the generator :

Lf (η) =
∑
x

bδ(η(x), η(x + 1))[f (ηx)− f (η)]1{η(x)>0}

with


ηx(z) = η(z) if z 6= x and z 6= x − 1

ηx(x) = η(x)− 1

ηx(x − 1) = η(x − 1) + 1



Example of vehicles trajectories on a ring
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Monte-Carlo simulations on a ring

Phase transition from homogeneous (uni-modal) to heterogeneous
(bi-modal) state with T r (example ϑ = 40m/s, V (d) = d )

→ Condition observed : V ′ < 1/(2T r )
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A mesoscopic traffic flow model by a misanthrope process

sections                                                                                                                                                           

● ● ● ● ●

x

∩
b(η(x), η(x + 1))

● ● ● ● ●

x + 1

→ We considere the evolution of vehicles number
(ηt(x), t ∈ R+, x ∈ Z) by section of length D

→ The rate of jump of a vehicle from section x to section x + 1 is :

b(η(x), η(x + 1)) = min

{
∆

(
η(x)

D

)
,Σ

(
η(x + 1)

D

)}
where Σ and ∆ are respectively the function of supply and demand



Process generator

The jump rate function b is an increasing function of the vehicles
number on the departure site and a decreasing function of the vehicles
number on the arrival site

→ (ηt , t ∈ R+) is a misanthrope process (COCOZZA 85)
→ Caracterised by the generator :

Lf (η) =
∑
x∈Z

b(η(x), η(x + 1))[f (ηx)− f (η)]1{η(x)>0}

with


ηx(z) = η(z) if z 6= x and z 6= x + 1

ηx(x) = η(x)− 1

ηx(x + 1) = η(x + 1) + 1



Invariante state of one section with open boundaries

● ● ● ● ● ● ●

D

∩
λ(n)

∩
µ(n)

n  vehicles

The enter rate λ and the exit rate µ are defined by :

λ(n) = min

{
α,Σ

( n

D

)}
and µ(n) = min

{
∆
( n

D

)
, β
}

where α is a demand upstream and β a supply downstream; the
demand and supply functions are linear by piece :

Σ
( n

D

)
= min

{
Qmax , a

(nmax

D
− n

D

)}
and ∆

( n

D

)
= min

{
b
n

D
,Qmax

}



Stationary distribution of vehicles number on the section

Since the process in reversible, the invariante measure π of the
vehicles number on the section is solution of the equation :

π(n − 1)λ(n − 1) = π(n)µ(n)

One finds π(n) = π(0)
n∏

i=1

λ(i − 1)

µ(i)
, π(0) =

(
1 +

nmax∑
n=1

n∏
i=1

λ(i − 1)/µ(i)
)−1
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Product invariant distribution of a lane

To obtain a product invariant distribution, the jump rate function b has
to satisfy the relations :

b(n, 0) +
b(1, n)

b(n + 1, 0)

b(p, 0)

b(1, p − 1)
b(n + 1, p − 1) = b(n, p) + b(p, 0)

→ Numerical examples present unreasonable aspects
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Performances in stationary state on a ring
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Stationary state performances of a lane with open
boundaries
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RIEMANN experiments
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Towards the simulation of a network
Modelling of an intersection with multiple paths

Performances observed when D→∞ :

Heterogeneous model


qd = min {pd ×

∑
i αi , βd}

Q =
∑
d

qd

FIFO model

{
Q = mind

{∑
i αi ,

βd
pd

}
qd = pdQ



Towards the simulation of a network
Modelling of an intersection with a bottleneck

Performances observed when D→∞ :

Heterogeneous model


qd = min

{
pd ×min

{∑
i αi ,Q0

max

}
, βd
}

Q =
∑
d

qd

FIFO model

{
Q = mind

{∑
i αi ,Q0

max ,
βd
pd

}
qd = pdQ
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Conclusion and working prospects

Conclusion
→ Markovian jump models can reproduce several traffic flow
caracteristics
→ They are polyvalent, easy to simulate and can be investigated
analytically (at least in basic cases)

Working prospects
→ Stationary state calculus using product and n-clusters forms
→ Explicite conditions on microscopic models parameters of the
transition phase uni-modal / bi-modal states
→ Study of a continuous space model using a Totally Asymmetric
Random Average Process


