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Traffic flow models by Markovian jump process

— Extracted from interacting particles systems widely studied in
Probability and Theorical Physics (stationary state form and its
stability, simulation methods)

— A process describes the evolution in continuous time of particles
jumping on a set of sites according to interaction rules

— The systems can be investigated analytically with probabilistic
tools and are easy to be simulated

— The Markovian models represent an stochastic alternative to
traffic flow modelling by differential system and an extension in
continuous time of cellular automata approach
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Main caracteristics of a Markovian jump process

(X;, t € RT) defined on E is a homogeneous Markovian jump process
if, forall n,all 0 < &y < t1,... < tpe1 and all ng, ..., Npt1 € E such
as P(Xt, =m0, ..., Xt, =nn) # 0, we have :

(th+1 77n+1/Xto N5+ Xty=1n) = (Xt,.+1 Nnt1/Xe, =
= 7)tn+1—tn(77n’77n+1)

— Py is called transition matrix of the Markovian process (X;) when
E is finite or even only countable. The matrix are Markovian i.e. for
alln, & € E:

Pe(n,€) >0, ) Pi(n k) =1

keE

In)



Main caracteristics of a Markovian jump process

(X¢, t € RT) is caracterised by its generator matrix L defined by :

Pl o), L = -3 L€

VneE, YE#n L(n,é‘):H
t=0 ¢

— When E is irreducible (i.e. V', &, t, Pr(n,&) > 0) reccurente (i.e.
for all € E, leaving from 7, the process will almost surely coming
back in 77), an invariante measure of the process (X, t € RT),
denoted T, is solution of the equation :

L=0 e WVneE Y m(&L(&n) =) w(n)L(®n¢)
§#n Sall

— A reversible measure y, for which for all , £ € E
u(mL(n, &) = u(§)L(E,; n). is invariante
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A microscopic traffic flow model by a zero-range process

bs(n(x)) bs(n(2))
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VEHICLES EVOLUTION

sites

— Vehicles evolves on a lane divided into cell of length §. We
considere vehicles distance gap (1:(v), t € Rt v € Z)

— The rate of jump bs of a vehicle x is a function of its distance gap :

bi((x)) = 57 (1e(x) x 9)

¥ is a function of «targeted speed» depending on the distance gap



Targeted speed function parameter

Ones assumes the targeted speed function constant, equal to a desired
speed denoted v beyond an interaction distance D

_|® (desired speed)
function V()

speed

- D (interaction distance)
T T T T T

pursuit case free case

distance gap



Process generator

(ne, t € RY) is a zero-range process defined on E = N%;
Z is the vehicle set, N is the vehicles distance gap discretised in unit &

— The process is caracterised by the generator L, defined for any
function f by :

Lf(n) =Y bs(nC)F (%) — Fm)]gy0>0)

n*(z) = n(z) ifz#xandz#x—1
with 7%(x) = n(x)—1
”(x—1) = nx—-1)+1

The jump rate only depends of the state of the departure site



Invariante distribution of the process on a infinite lane

(ne, t € RT) is a zero-range process defined on E = N whose
asymptotic distribution is known on a finite and infinite space
(SPITZER 70, ANDJEL 82)

— For the case of an infinite lane, the (7(x), x € Z) are independent,
identically distributed according to :

. _ zMVs(m)/Cs fo<m<K
Falm) = { 2mUs(K = 1)(5/9)™K/Cs ifm> K

with K = D/5 Vs(m) = H’n" 1(bs(n))~! with W5(0) = 1,

Cs =K% 0Z™MVs(m) + 5 “g‘sz(/ﬁ) and z = Eb; a parameter usually
called fugacity




Distance gap distribution are uni-modal

— That traduct the absence of kinematic (stop-and-go) waves
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Calculus of performance indicators in stationary state

By construction of the model the mean speed is equalto V = ¢ X z
— Performance indicators depend of vehicles mean speed

The mean distance gap is deducted from the mean number of free
cells in front:

5 K-1 m 14 ﬁ K Y
EDs(V) = <mzo H 1-V/9 Hl V(néd)

The flow density and flow volume are given by :

os(V) = 1/(EDs(V)+ )
(V) = V/(EDs(V)+ 1)



Calculus of performance indicators for the case § — 0

The limit calculus é — 0 allows to:
e Simplify the formulas;

e Evaluate the impact of the spatial discretisation

One shows that on [0, 9], EDs(V) — # ~1(V) when § — 0

By inversing the variables ) and g, one shows that, when § — 0:
V(e)=7(1/e—1)
Qo) =eox7V(1/e—1).

— 0 =1/(D + ¢) is the critical density threshold beyond which
vehicles mean speed become less that the desired speed



Study of the distance gap variance in stationary state

2
VDs(z) = 8 | Y _(F2(m))* - (Z 7"rz(m)>

m
Distance gap variance gives use an indicator of vehicles repartition
One show that :
vV e 0,9, gimoVD(;(V) =0

— This result and the previous expected value are obtained by
showing that

K-1 i i d
I ZI 1 h(?) Hj 1 g%(/l)() — h(d
Kl—r>noo K-1 o ( )
ZI 1 H_; 1 g(J/K)

for all d € [0, 1] and under the asumptions g € C* from [0, 1] to [0, 1]
such as 0 < o < g’ and h with finite growth
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Mean performances in the stationary state
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Introduction of a reaction time parameter 7 "

— At the instant ¢, the jump rate of the vehicle x becomes
%”// (dn¢—7r(x)) where the delayed distance gap dn;—7r(x) is
approximated by :

6 X ne—gr(x) = one(x) = T (¥ (6ne(x + 1)) = ¥ (0n:(x)))

— Process caracterised by the generator :
Zba n(x +D)F () — F (] (x)>01

{?7() = n(z) ifz#xandz#x—1
with
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Monte-Carlo simulations on a ring

Phase transition from homogeneous (uni-modal) to heterogeneous
(bi-modal) state with 7" (example ¥ = 40 m/s, ¥ (d) = d)

— Condition observed: ¥’ < 1/(27")
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A mesoscopic traffic flow model by a misanthrope process

b(n(x). n(x+1))

e oo ..|L__

sections

— We considere the evolution of vehicles number
(ne(x), t € R, x € Z) by section of length D

— The rate of jump of a vehicle from section x to section x + 1 is:
1
bt + 1) = min & (75)) 2 (1) |

where 2 and A are respectively the function of supply and demand



Process generator

The jump rate function b is an increasing function of the vehicles
number on the departure site and a decreasing function of the vehicles
number on the arrival site

— (n¢, t € RT) is a misanthrope process (COCOZZA 85)

— Caracterised by the generator :

= > bnx).n(x + D)F ) = F )L g0y
XEL
n*(z) = n(z) ifz#xandz #x+1
with 7*(x) = n(x)—1
(x+1) = nx+1)+1



Invariante state of one section with open boundaries

A(n) p(n)

n vehicles

The enter rate A and the exit rate y are defined by :

A(n) = min {a, Y (%)} and u(n) = min {A <%> 7/3}

where « is a demand upstream and [ a supply downstream; the
demand and supply functions are linear by piece :

£(5) - min{Omea ("5 5)} i 4(5) - min{o.0m)




Stationary distribution of vehicles number on the section

Since the process in reversible, the invariante measure 7 of the
vehicles number on the section is solution of the equation :

w(n—1)A(n—1) =7(n)u(n)

A —1 = A~
One finds 7(n) = =(0) [ (L(i) ),W(O) =1+ JIAG—1)/ui)™
i=1 n=1 j=1
3 = Qe B = Qi
z ° o= Qua/2 , B =Qras/2
S ] O = Qmax/2 , B = Qmax
T 8 - 0=Quax, B=Qua2
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Product invariant distribution of a lane

To obtain a product invariant distribution, the jump rate function b has
to satisfy the relations :

b(1,n)  b(p,0)
b(n+1,0) b(1,p — 1)

b(n,0) + b(n+1,p—1) = b(n,p)+ b(p,0)

— Numerical examples present unreasonable aspects




Performances in stationary state on a ring
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Stationary state performances of a lane with open
boundaries
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Towards the simulation of a network

Modelling of an intersection with multiple paths
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Towards the simulation of a network

Modelling of an intersection with a bottleneck
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Conclusion and working prospects

Conclusion

— Markovian jump models can reproduce several traffic flow
caracteristics

— They are polyvalent, easy to simulate and can be investigated
analytically (at least in basic cases)

Working prospects

— Stationary state calculus using product and n-clusters forms

— Explicite conditions on microscopic models parameters of the
transition phase uni-modal / bi-modal states

— Study of a continuous space model using a Totally Asymmetric
Random Average Process



