Properties in stationary state of a microscopic traffic model mixing stochastic transport and car-following

Sylvain LASSARREa Michel ROUSSIGNOLb Andreas SCHADSDHNEIDERc Antoine TORDEUXd

a Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR)
b Paris-Est University – Laboratoire Analyse et Mathématiques Appliquées
c Cologne University – Institut für Theoretische Physik
d Paris-Est University – Laboratoire Ville Mobilité Transport

TRAFFIC AND GRANULAR FLOW ’11
INTERNATIONAL CONFERENCE

October 29, 2011 — Moscow, RUSSIA
Objective and outline

Model uni-dimensional vehicle line using

- Parameters of car-following model by delay-differential equation
 → speed function of the gap, driver reaction time
- Stochastic transport process by markovian jump process
 → Continuous extension of Cellular Automata models
 → Interacting Particle Systems statistical physic theory

Table of contents

- Real traffic experiment and model parameters
- Description of the basic stochastic car-following model
- Description of the model including a reaction time
- Conclusion
Behavior of a vehicle line for interactive density levels: kinematic (stop-and-go) waves

Real vehicle trajectories on a ring → Bi-modal vehicle performances

Corresponding Space-Time diagram

Modelling assumptions and parameters

- Coupled interaction between the vehicle and the predecessor → Speed V as a function of the distance gap

- Delay in the regulation process of a driver → Striclty positive reaction time parameter T'
INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION
Definition of the model 1

Deterministic

- **NEWELL** first-order car-following model\(^a\) with no delay
 \[\dot{x}_i(t) = V(x_{i+1}(t) - x_i(t)) \]
 \(\rightarrow\) Stable if \(V' > 0\)

- Explicit Euler discretisation scheme with time step \(\delta t > 0\) gives
 \[x_i(t + \delta t) = x_i(t) + \delta t \times V(x_{i+1}(t) - x_i(t)) \]
 \(\rightarrow\) Vehicles jump synchronously of \(\delta t \times V\) at each time step \(\delta t\)

Stochastic

- Each vehicle jump independently according to a homogeneous poissonian process of parameter \(1/\delta t\)
 - Jump size of the vehicle \(i\) at \(t\) is \(\delta t \times V(x_{i+1}(t) - x_i(t))\)
Mathematical formulation

- \(N \geq 2 \) vehicles on a ring of length \(L \) with curvilinear abscissa \((x_i)_i\)
 with \(i \in [1, N] \) the index of the vehicles (vehicle \(i + 1 \) is the predecessor of the vehicle \(i \))

- \(\Delta_i = x_{i+1} - x_i \), for \(i < N \), and \(\Delta_N = x_1 - x_N + L \) are the vehicle spacings defined on \(\mathbb{R}_+ \)

- \(\eta = (\Delta_i)_i \) is a markovian jump process defined on \(E = \mathbb{R}_+^N \)

- Process characterised by the generator \(\mathcal{L} \) given for any function \(f : E \mapsto \mathbb{R} \) by

\[
\mathcal{L} f(\eta) = \sum_i \frac{1}{\delta t} [f(\eta^i) - f(\eta)] \mathbb{1}_{\{\delta t \leq \Delta_i / V(\Delta_i)\}}
\]

with \(\eta^i = (\Delta^i_j)_j \) and \(\Delta^i_j = \begin{cases}
\Delta_j & \text{if } j \neq i, i - 1 \\
\Delta_i - \delta t \times V(\Delta_i) & \text{if } j = i \\
\Delta_{i-1} + \delta t \times V(\Delta_i) & \text{if } j = i - 1
\end{cases} \)
Link with the TARAP

• If \(V(d) = d/T \), \(\eta \) is a Totally Asymmetric Random Average Process\(^a\)

\[
\mathcal{L}f(\eta) = \sum_i \frac{1}{\delta t} \int p(u) \, du \, [f(\eta^i(u)) - f(\eta)] \mathbf{1}_{\{\Delta_i > 0\}}
\]

with \(p \) a pdf on \([0, 1]\), and \(\Delta^i_j(u) = \begin{cases}
\Delta_j \\
u\Delta_i \\
\Delta_{i-1} + (1-u)\Delta_i
\end{cases}
\)

if \(j \neq i, i-1 \)

if \(j = i \)

if \(j = i-1 \)

\(\rightarrow p \) is deterministic with the model 1: \(p(u) = \delta_{1-\delta t/T}(u) \) \((0 < \delta t \leq T)\)

\(^a\)M. ROUSSIGNOL, Ann. Inst. Henri Poincaré B 16(2), 101–108

• In the infinite case \(L = \infty \), if initial system distribution \(\alpha \in E \) is homogeneous in space with \(E\alpha_i = D \) and \(\sum_i |E\alpha_1 \alpha_i - D^2| < \infty \), then, denoting \(r = \int (1-u)p(u) \, du \) and \(s = \int u(1-u)p(u) \, du \)

\[
E\Delta_i = D \quad \forall i \forall t \quad \text{and} \quad \lim_{t \to \infty} \text{var} \Delta_i = D^2(r/s - 1) \quad \forall i \\
= \delta t D^2/(T - \delta t)
\]
Definition of the model 2

- Vehicle jump size is random
- \(p \) has a beta distribution on \([0, 1]\) with parameters \(m, n > 0 \)

\[
p(u) = \frac{1}{\beta(m, n)} u^{m-1}(1-u)^{n-1} \mathbb{1}_{[0,1]}(u)
\]

with \(\beta(m, n) = \int_0^1 u^{m-1}(1-u)^{n-1} \, du \)

\(\rightarrow \) One denotes \(m = (1 - \delta t / T)(K - 1) \) and \(n = \delta t (K - 1) / T \) with \(K > 1 \) calibrating the variability of \(p \)

- For the infinite system, the spacing variability in stationary state is

\[
\lim_{t \to \infty} \nabla \Delta_i = D^2 \frac{T + \delta t (K - 1)}{(T - \delta t)(K - 1)} \quad \forall i
\]

\(\rightarrow \)

\[
\delta t \to 0 \quad D^2 / (K - 1)
\]
Invariant distribution calculus

- The invariant distribution $\pi : E \mapsto [0, 1]$ satisfies
 \[
 \int_E \pi(d\eta) \mathcal{L}f(\eta) = 0 \tag{1}
 \]

- If π admits a product density form: $\pi(d\eta) = \prod_i \tilde{\pi}(\Delta_i) \prod_j d\Delta_j$, with marginal $\tilde{\pi} : \mathbb{R}^+ \mapsto [0, 1]$, (1) holds if $\forall i$
 \[
 \int_0^{\Delta_i-1} p \left(\frac{\Delta_i}{x + \Delta_i} \right) \frac{dx}{x + \Delta_i} \tilde{\pi}(\Delta_i - x) \tilde{\pi}(\Delta_i + x) = \tilde{\pi}(\Delta_i-1)\tilde{\pi}(\Delta_i) \tag{2}
 \]

- If $\tilde{\pi}$ is gamma distributed: $\tilde{\pi}(x) = x^{\gamma-1} \exp(-x/\theta) \frac{\Gamma(\gamma)}{\Gamma(\gamma+\theta)} \mathbb{1}_{[0,\infty)}(x)$ with $\Gamma(\gamma) = \int_0^\infty u^{\gamma-1} e^{-u} du$, $\gamma = K - 1$ and $\theta = (K - 1)/D$, (2) leads to
 \[
 \left(\frac{\Delta_i-1}{\Delta_i} \right)^n \frac{(\Gamma(\gamma))^2}{\Gamma(\gamma+n)\Gamma(\gamma-n)} = 1
 \]
 that holds if $n \to 0$ that is $\delta t \to 0$ or $K \to 1$
Empirical invariant marginal spacing distribution

→ Distributions tend towards the gamma form when $\delta t \to 0$
Examples of trajectories on a ring

$K = 2$

$K = 50$
INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION
Definition of the model 3

Deterministic

- **NEWELL** car-following model with delay $T' \geq 0$, denoting
 \[\Delta_i = x_{i+1} - x_i \]
 \[\dot{x}_i(t) = V(\Delta_i(t - T')) \]
 \[\rightarrow \text{Stable if } 0 < V' < 1/(2T') \]

- Explicit Euler discretisation scheme with time step $\delta t > 0$ and linear approximation for T' gives
 \[x_i(t + \delta t) = x_i(t) + \delta t \times V[\Delta_i(t) - T'(\dot{x}_{i+1}(t) - \dot{x}_i(t))] \]

Stochastic

- Each vehicle jump independently according to a homogeneous Poissonian process of parameter $1/\delta t$

- Jump size of the vehicle i at t is deterministic:
 \[s_i(t, T', \delta t) = \delta t \times V[\Delta_i(t) - T'(V(\Delta_{i+1}(t)) - V(\Delta_i(t)))] \]
Mathematical formulation

- $\eta = (\Delta_i)_i$ is a markovian jump process defined on $E = \mathbb{R}_+^N$

- Process characterised by the generator \mathcal{L} given for any function $f : E \mapsto \mathbb{R}$ by

$$\mathcal{L} f(\eta) = \sum_i \frac{1}{\delta t} [f(\eta^i) - f(\eta)] \mathbb{1}_{\{\Delta_i \leq s_i\}}$$

with $\eta^i = (\Delta^i_j)_j$ and $\Delta^i_j = \begin{cases}
\Delta_j & \text{if } j \neq i, i - 1 \\
\Delta_i - s_i & \text{if } j = i \\
\Delta_{i-1} + s_i & \text{if } j = i - 1
\end{cases}$

- This process is not a known markovian jump one: mass is transfer from a site to the following one while jump rate depends of considered and preceding sites

- Stationary distribution hard to calculate analytically, it may be investigated by simulation
Examples of trajectories on a ring

$T_r = 0$

$T_r = 1$
For interactive density level and sufficiently high reaction time, the distributions tend towards bi-modal ones when $\delta t \to 0$.

Condition for stop-and-go wave emergence is the same as the stability condition of the deterministic car-following models:

$$T' > 1/(2V') \quad (= T/2)$$

Maximum vehicle speed specifies critical density level (free or congested)
INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION
Conclusion

Theoretical (model 1 and 2 with no reaction time)

- Asymptotic invariant distributions are obtained for a totally asymmetric random average process

Practical (model 3 with reaction time)

- Stop-and-go wave emergence conditions are observed with different ways of modelling (deterministic by car-following model and stochastic by markovian jump process)
 ⇝ Fundamental mecanism between « reaction time » and « targeted speed function form »
Thank you for your attention