Properties in stationary state of a microscopic traffic model mixing stochastic transport and car-following

Sylvain LASSARRE^a Michel ROUSSIGNOL^b Andreas SCHADSCHNEIDER^c Antoine TORDEUX^d

^aInstitut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR) ^bParis-Est University – Laboratoire Analyse et Mathématiques Appliquées ^cCologne University – Institut für Theoretische Physik ^dParis-Est University – Laboratoire Ville Mobilité Transport

> TRAFFIC AND GRANULAR FLOW ' 11 INTERNATIONAL CONFERENCE

> > October 29, 2011 — Moscow, RUSSIA

Objective and outline

Model uni-dimensional vehicle line using

- Parameters of car-following model by delay-differential equation \rightarrow speed function of the gap, driver reaction time
- Stochastic transport process by markovian jump process
 - \rightarrow Continuous extension of Cellular Automata models
 - → Interacting Particle Systems statistical physic theory^a

^aT.M. LIGGETT, Interacting Particle Systems, Springer 1985

Table of contents

- Real traffic experiment and model parameters
- · Description of the basic stochastic car-following model
- Description of the model including a reaction time
- Conclusion

CONCLUSION

Behavior of a vehicle line for interactive density levels : kinematic (stop-and-go) waves

¹SUGIYAMA et al., New J. Phys. **10** (2008) 033001

Modelling assumptions and parameters

Coupled interaction between the vehicle and the predecessor
 → Speed *V* as a function of the distance gap

- Delay in the regulation process of a driver
 - \rightarrow Striclty positive reaction time parameter T^r

INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION

Definition of the model 1

• NEWELL first-order car-following model^a with no delay

$$\dot{x}_i(t) = V(x_{i+1}(t) - x_i(t))$$

 \rightarrow Stable if V' > 0

• Explicite Euler discretisation scheme with time step $\delta t > 0$ gives

$$\mathbf{x}_i(t+\delta t) = \mathbf{x}_i(t) + \delta t \times \mathbf{V}(\mathbf{x}_{i+1}(t) - \mathbf{x}_i(t))$$

 \rightarrow Vehicles jump synchronously of $\delta t \times V$ at each time step δt

^aG.F. NEWELL, Op. Res. 36(3) (1961) 195–205

Stochastic

- Each vehicle jump independently according to a homogeneous poissonian process of parameter $1/\delta t$
- Jump size of the vehicle *i* at *t* is $\delta t \times V(x_{i+1}(t) x_i(t))$

Mathematical formulation

• $N \ge 2$ vehicles on a ring of length L with curvilinear abscissa $(x_i)_i$ with $i \in [\![1, N]\!]$ the index of the vehicles (vehicle i + 1 is the predecessor of the vehicle i)

• $\Delta_i = x_{i+1} - x_i$, for i < N, and $\Delta_N = x_1 - x_N + L$ are the vehicle spacings defined on \mathbb{R}_+

• $\eta = (\Delta_i)_i$ is a markovian jump process defined on $E = \mathbb{R}^N_+$

• Process characterised by the generator \mathscr{L} given for any function $f: E \mapsto \mathbb{R}$ by

$$\mathscr{L}f(\eta) = \sum_{i} \frac{1}{\delta t} [f(\eta^{i}) - f(\eta)] \mathbb{1}_{\{\delta t \le \Delta_{i}/V(\Delta_{i})\}}$$

with $\eta^{i} = (\Delta_{j}^{i})_{j}$ and $\Delta_{j}^{i} = \begin{cases} \Delta_{j} & \text{if } j \neq i, i-1\\ \Delta_{i} - \delta t \times V(\Delta_{i}) & \text{if } j = i\\ \Delta_{i-1} + \delta t \times V(\Delta_{i}) & \text{if } j = i-1 \end{cases}$

Link with the TARAP

• If V(d) = d/T, η is a Totally Asymmetric Random Average Process^a

$$\mathscr{L}f(\eta) = \sum_{i} \frac{1}{\delta t} \int p(u) \, \mathrm{d}u \, [f(\eta^{i}(u)) - f(\eta)] \mathbb{1}_{\{\Delta_{i} > 0\}}$$

with *p* a pdf on [0, 1], and $\Delta_{j}^{i}(u) = \begin{cases} \Delta_{j} & \text{if } j \neq i, i-1 \\ u\Delta_{i} & \text{if } j = i \\ \Delta_{i-1} + (1-u)\Delta_{i} & \text{if } j = i-1 \end{cases}$

 $\rightarrow p$ is deterministic with the model 1: $p(u) = \delta_{1-\delta t/T}(u)$ (0 < $\delta t \leq T$)

^aM. ROUSSIGNOL, Ann. Inst. Henri Poincaré B 16(2), 101–108

• In the infinite case $L = \infty$, if initial system distribution $\alpha \in E$ is homogeneous in space with $\mathbb{E}\alpha_i = D$ and $\sum_i |\mathbb{E}\alpha_1\alpha_i - D^2| < \infty$, then, denoting $r = \int (1-u)p(u) du$ and $s = \int u(1-u)p(u) du$

$$\mathbb{E}\Delta_{i} = D \quad \forall i \forall t \quad \text{and} \quad \lim_{t \to \infty} \operatorname{var} \Delta_{i} = D^{2}(r/s - 1) \quad \forall i$$
$$= \delta t D^{2}/(T - \delta t)$$

Definition of the model 2

- Vehicle jump size is random
- p has a beta distribution on [0, 1] with parameters m, n > 0

$$p(u) = \frac{1}{\beta(m,n)} u^{m-1} (1-u)^{n-1} \mathbb{1}_{[0,1]}(u)$$

with $\beta(m, n) = \int_0^1 u^{m-1} (1 - u)^{n-1} du$

 \rightarrow One denotes $m = (1 - \delta t/T)(K - 1)$ and $n = \delta t(K - 1)/T$ with K > 1 calibrating the variability of p

For the infinite system, the spacing variability in stationary state is

$$\lim_{t \to \infty} \mathbb{V}\Delta_i = D^2 \frac{T + \delta t(K-1)}{(T - \delta t)(K-1)} \quad \forall i$$
$$\xrightarrow{\delta t \to 0} D^2 / (K-1)$$

Invariant distribution calculus

• The invariant distribution $\pi: E \mapsto [0, 1]$ satisfies

J

$$\int_{E} \pi(\mathrm{d}\eta) \mathscr{L}f(\eta) = \mathbf{0} \tag{1}$$

• If π admits a product density form: $\pi(d\eta) = \prod_i \tilde{\pi}(\Delta_i) \prod_j d\Delta_j$, with marginal $\tilde{\pi} : \mathbb{R}^+ \mapsto [0, 1]$, (1) holds if $\forall i$

$$\int_{0}^{\Delta_{i-1}} \rho\left(\frac{\Delta_{i}}{x+\Delta_{i}}\right) \frac{\mathrm{d}x}{x+\Delta_{i}} \tilde{\pi} \left(\Delta_{i-1}-x\right) \tilde{\pi} \left(\Delta_{i}+x\right) = \tilde{\pi}(\Delta_{i-1}) \tilde{\pi}(\Delta_{i}) \qquad (2)$$

• If $\tilde{\pi}$ is gamma distributed: $\tilde{\pi}(x) = x^{\gamma-1} \frac{\exp(-x/\theta)}{\Gamma(\gamma)\theta^{\gamma}} \mathbb{1}_{[0,\infty)}(x)$ with $\Gamma(\gamma) = \int_0^\infty u^{\gamma-1} e^{-u} du, \ \gamma = K - 1$ and $\theta = (K - 1)/D$, (2) leads to

$$\left(\frac{\Delta_{i-1}}{\Delta_i}\right)^n \frac{(\Gamma(\gamma))^2}{\Gamma(\gamma+n)\Gamma(\gamma-n)} = 1$$

that holds if $n \rightarrow 0$ that is $\delta t \rightarrow 0$ or $K \rightarrow 1$

Empirical invariant marginal spacing distribution

ightarrow Distributions tend towards the gamma form when $\delta t
ightarrow$ 0

Examples of trajectories on a ring

K = 2

K = 50

INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION

Definition of the model 3

• NEWELL car-following model with delay $T^r \ge 0$, denoting $\Delta_i = x_{i+1} - x_i$

$$\dot{x}_i(t) = V(\Delta_i(t-\mathsf{T}^r))$$

- \rightarrow Stable if 0 < V' $< 1/(2\,T^r)$
- Explicite Euler discretisation scheme with time step δt > 0 and linear approximation for T^r gives

$$\mathbf{x}_i(t+\delta t) = \mathbf{x}_i(t) + \delta t \times \mathbf{V} \big[\Delta_i(t) - \mathcal{T}^r(\dot{\mathbf{x}}_{i+1}(t) - \dot{\mathbf{x}}_i(t)) \big]$$

Stochastic

- Each vehicle jump independently according to a homogeneous poissonian process of parameter $1/\delta t$
- Jump size of the vehicle *i* at *t* is deterministic:

$$\boldsymbol{s}_{i}(t,\mathsf{T}^{\mathsf{r}},\delta t) = \delta t \times \boldsymbol{V} \big[\Delta_{i}(t) - \boldsymbol{T}^{\mathsf{r}} (\boldsymbol{V}(\Delta_{i+1}(t)) - \boldsymbol{V}(\Delta_{i}(t))) \big]$$

Mathematical formulation

- $\eta = (\Delta_i)_i$ is a markovian jump process defined on $E = \mathbb{R}^N_+$
- Process characterised by the generator \mathscr{L} given for any function $f: E \mapsto \mathbb{R}$ by

$$\mathscr{L}f(\eta) = \sum_{i} \frac{1}{\delta t} [f(\eta^{i}) - f(\eta)] \mathbb{1}_{\{\Delta_{i} \leq s_{i}\}}$$

with $\eta^{i} = (\Delta_{j}^{i})_{j}$ and $\Delta_{j}^{i} = \begin{cases} \Delta_{j} & \text{if } j \neq i, i-1 \\ \Delta_{i} - s_{i} & \text{if } j = i \\ \Delta_{i-1} + s_{i} & \text{if } j = i-1 \end{cases}$

• This process is not a known markovian jump one: mass is transfer from a site to the following one while jump rate depends of considered and preceding sites

• Stationary distribution hard to calculate analytically, it may be investigated by simulation

Examples of trajectories on a ring

Empirical invariant marginal spacing distribution

 \rightarrow For interactive density level and sufficiently high reaction time, the distributions tend towards bi-modal ones when $\delta t \rightarrow 0$

 \rightarrow Condition for stop-and-go wave emergence is the same as the stability condition of the deterministic car-following models:

$$T^r > 1/(2V')$$
 (= $T/2$)

 \rightarrow Maximum vehicle speed specifies critical density level (free or congested)

INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION

Conclusion

Theorical (model 1 and 2 with no reaction time)

 Asymptotic invariant distributions are obtained for a totally asymmetric random average process

Practical (model 3 with reaction time)

 Stop-and-go wave emergence conditions are observed with different ways of modelling (deterministic by car-following model and stochastic by markovian jump process)

 \rightsquigarrow Fundamental mecanism between « reaction time » and « targeted speed function form »

Thank you for your attention