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Objective and outline

Model uni-dimensional vehicle line using
• Parameters of car-following model by delay-differential equation

→ speed function of the gap, driver reaction time
• Stochastic transport process by markovian jump process

→ Continuous extension of Cellular Automata models
→ Interacting Particle Systems statistical physic theorya

aT.M. LIGGETT, Interacting Particle Systems, Springer 1985

Table of contents
• Real traffic experiment and model parameters
• Description of the basic stochastic car-following model
• Description of the model including a reaction time
• Conclusion
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Behavior of a vehicle line for interactive density
levels : kinematic (stop-and-go) waves

Corresponding Space-Time diagram1

(movie)

Real vehicle trajectories on a ring

→ Bi-modal vehicle performances

1SUGIYAMA et al., New J. Phys. 10 (2008) 033001


movie.mpg
Media File (video/mpeg)
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Modelling assumptions and parameters

• Coupled interaction between the vehicle and the predecessor
→ Speed V as a function of the distance gap

spacing 
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• Delay in the regulation process of a driver
→ Striclty positive reaction time parameter Tr



INTRODUCTION BASIC STOCHASTIC CAR-FOLLOWING MODEL MODEL WITH A REACTION TIME CONCLUSION

INTRODUCTION

BASIC STOCHASTIC CAR-FOLLOWING MODEL

MODEL WITH A REACTION TIME

CONCLUSION



INTRODUCTION BASIC STOCHASTIC CAR-FOLLOWING MODEL MODEL WITH A REACTION TIME CONCLUSION

Definition of the model 1 Simulation

Deterministic
• NEWELL first-order car-following modela with no delay

ẋi (t) = V (xi+1(t)− xi (t))

→ Stable if V ′ > 0
• Explicite Euler discretisation scheme with time step δt > 0 gives

xi (t + δt) = xi (t) + δt × V (xi+1(t)− xi (t))

→ Vehicles jump synchronously of δt × V at each time step δt
aG.F. NEWELL, Op. Res. 36(3) (1961) 195–205

Stochastic
• Each vehicle jump independently according to a homogeneous

poissonian process of parameter 1/δt
• Jump size of the vehicle i at t is δt × V (xi+1(t)− xi (t))
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Mathematical formulation

• N ≥ 2 vehicles on a ring of length L with curvilinear abscissa (xi )i
with i ∈ [[1,N]] the index of the vehicles (vehicle i + 1 is the
predecessor of the vehicle i)

• ∆i = xi+1 − xi , for i < N, and ∆N = x1 − xN + L are the vehicle
spacings defined on R+

• η = (∆i )i is a markovian jump process defined on E = RN
+

• Process characterised by the generator L given for any function
f : E 7→ R by

L f (η) =
∑

i

1
δt

[f (ηi )− f (η)]1{δt≤∆i/V (∆i )}

with ηi = (∆i
j )j and ∆i

j =

 ∆j if j 6= i , i − 1
∆i − δt × V (∆i ) if j = i
∆i−1 + δt × V (∆i ) if j = i − 1
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Link with the TARAP

• If V (d) = d/T , η is a Totally Asymmetric Random Average Processa

L f (η) =
∑

i

1
δt

∫
p(u) du [f (ηi (u))− f (η)]1{∆i >0}

with p a pdf on [0, 1], and ∆i
j (u) =


∆j if j 6= i, i−1
u∆i if j = i
∆i−1 + (1−u)∆i if j = i−1

→ p is deterministic with the model 1: p(u) = δ1−δt/T (u) (0 < δt ≤ T )

aM. ROUSSIGNOL, Ann. Inst. Henri Poincaré B 16(2), 101–108

• In the infinite case L =∞, if initial system distribution α ∈ E is
homogeneous in space with Eαi = D and

∑
i |Eα1αi −D2| <∞, then,

denoting r =
∫

(1− u)p(u) du and s =
∫

u(1− u)p(u) du

E∆i = D ∀i∀t and lim
t→∞

var ∆i = D2(r/s − 1) ∀i
= δt D2/(T − δt)
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Definition of the model 2 Simulation

• Vehicle jump size is random

• p has a beta distribution on [0,1] with parameters m,n > 0

p(u) =
1

β(m,n)
um−1(1− u)n−1

1[0,1](u)

with β(m,n) =
∫ 1

0 um−1(1− u)n−1 du

→ One denotes m = (1− δt/T ) (K − 1) and n = δt (K − 1) /T with
K > 1 calibrating the variability of p

• For the infinite system, the spacing variability in stationary state is

lim
t→∞

V∆i = D2 T +δt(K−1)
(T−δt)(K−1) ∀i

→
δt→0

D2/(K − 1)
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Invariant distribution calculus

• The invariant distribution π : E 7→ [0,1] satisfies∫
E
π(dη)L f (η) = 0 (1)

• If π admits a product density form: π(dη) =
∏

i π̃(∆i )
∏

j d∆j , with
marginal π̃ : R+ 7→ [0,1], (1) holds if ∀i∫ ∆i−1

0
p
(

∆i

x + ∆i

)
dx

x + ∆i
π̃ (∆i−1 − x) π̃ (∆i + x) = π̃(∆i−1)π̃(∆i ) (2)

• If π̃ is gamma distributed: π̃(x) = xγ−1 exp(−x/θ)
Γ(γ)θγ 1[0,∞)(x) with

Γ(γ) =
∫∞

0 uγ−1e−udu, γ = K − 1 and θ = (K − 1)/D, (2) leads to(
∆i−1

∆i

)n
(Γ(γ))2

Γ(γ + n)Γ(γ − n)
= 1

that holds if n→ 0 that is δt → 0 or K → 1
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Empirical invariant marginal spacing distribution
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→ Distributions tend towards the gamma form when δt → 0
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Examples of trajectories on a ring
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Definition of the model 3 Simulation

Deterministic
• NEWELL car-following model with delay Tr ≥ 0, denoting

∆i = xi+1 − xi

ẋi (t) = V (∆i (t − Tr))

→ Stable if 0 < V ′ < 1/(2 Tr)

• Explicite Euler discretisation scheme with time step δt > 0 and
linear approximation for Tr gives

xi (t + δt) = xi (t) + δt × V
[
∆i (t)− T r (ẋi+1(t)− ẋi (t))

]
Stochastic
• Each vehicle jump independently according to a homogeneous

poissonian process of parameter 1/δt
• Jump size of the vehicle i at t is deterministic:

si (t ,Tr, δt) = δt × V
[
∆i (t)− T r (V (∆i+1(t))− V (∆i (t)))

]
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Mathematical formulation

• η = (∆i )i is a markovian jump process defined on E = RN
+

• Process characterised by the generator L given for any function
f : E 7→ R by

L f (η) =
∑

i

1
δt

[f (ηi )− f (η)]1{∆i≤si}

with ηi = (∆i
j )j and ∆i

j =

 ∆j if j 6= i , i − 1
∆i − si if j = i
∆i−1 + si if j = i − 1

• This process is not a known markovian jump one: mass is transfer
from a site to the following one while jump rate depends of
considered and preceding sites

• Stationary distribution hard to calculate analytically, it may be
investigated by simulation
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Examples of trajectories on a ring
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Empirical invariant marginal spacing distribution
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→ For interactive density level and sufficiently high reaction time,
the distributions tend towards bi-modal ones when δt → 0

→ Condition for stop-and-go wave emergence is the same as the
stability condition of the deterministic car-following models:

Tr > 1/(2V ′) (= T/2)

→ Maximum vehicle speed specifies critical density level (free or
congested)
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Conclusion

Theorical (model 1 and 2 with no reaction time)
• Asymptotic invariant distributions are obtained for a totally

asymmetric random average process

Practical (model 3 with reaction time)
• Stop-and-go wave emergence conditions are observed with

different ways of modelling (deterministic by car-following model
and stochastic by markovian jump process)
 Fundamental mecanism between « reaction time » and

« targeted speed function form »
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Thank you for your attention
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