Lightning Talk at CCS 2025

Noise-Induced Traffic Instabilities: Modelling and Experimental Insights

Raphael Korbmacher¹, Oscar Dufour², Alexandre Nicolas², Andreas Schadschneider³, Antoine Tordeux¹

- 1. University of Wuppertal, Germany
- 2. Université Claude Bernard Lyon 1, France
- 3. University Cologne, Germany

Motivation: Stop-and-go Waves in Traffic

Fig 1: Sugiyama et al.: Traffic jams without bottlenecks. New J Phys, 10:033001, 2008

Motivation: Stop-and-go Waves in Traffic

Fig 2: Phase transition in the Sugiyama Experiment. Speed drops, standard deviation rises

Deterministic Car-Following Model

$$\dot{v} = \frac{v_{opt}(s) - v}{\tau}$$

$$0 < \frac{2}{\tau} < T$$

 τ : Reaction time

T: Timegap

Stochastic Car-Following Model

$$dv_n(t) = A(x_{n+1}(t) - x_n(t), v_n(t), v_{n+1}(t))dt + \sigma dW_n(t)$$

- \triangleright With $\sigma dW_n(t)$ independent Wiener processes
- ➤ Can lead to unstable traffic with stop-and-go waves even if A is linearly stable.

Stochastic Car-Following Model

A linear (unconditional stability)

Critical settings for A (subcritical instability)

The Adaptive Time-Gap Model

No phase transition in linearly stable models-> white noise can not influence stability properties

What about the Adaptive Time-Gap Model [1]

- non-linear
- \triangleright Linearly stable for all parameter if $\tau, T > 2$

$$\dot{v} = \frac{1}{T_k} \left[\frac{g_k - T v_k}{\tau} + \Delta v_k \right] dt + \sigma dW_n$$

[1] Tordeux, Antoine, Sylvain Lassarre, and Michel Roussignol. "An adaptive time gap car-following model." *Transportation research part B: methodological* 44.8-9 (2010): 1115-1131.

The stochastic Adaptive Time-Gap Model (ATG)

A nonlinear (nonlinear instability)

Dufour, Oscar, et al. "Noise-induced transition to stop-and-go waves in single-file traffic rationalized by an analogy with Kapitza's inverted pendulum." arXiv preprint arXiv: 2503.23594(2025).

Results and Future Steps

Linear stability not sufficient to control stop-and-go dynamics in stochastic systems

Future Actions:

- Conduct testing on simulation platforms CARLA with driver Seat.
- > Perform robotic experiments.

Contact: korbmacher@uni-wuppertal.de

*This work is supported by the German Research Foundation (DFG, grant number 546728715)

