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Content

Introduction to descriptive and parametric statistic with R

The objectives are both to propose useful statistical methods
allowing to analyse univariate and multivariate data or to de-
velop and calibrate models, as well as to learn how to use R.

The course is organized in three sessions :

I Session 1 : Statistics for uni- and bivariate dataset

I Session 2 : Statistics for multivariate dataset

I Session 3 : Parametric statistic and statistical inference

Git : gitlab.version.fz-juelich.de

Homepage : www.vzu.uni-wuppertal.de/lehre

Download R : cran.r-project.org

https://gitlab.version.fz-juelich.de/tordeux1/Statistic-with-R
https://www.vzu.uni-wuppertal.de/lehre/einfuehrung-in-die-statistik-mit-r.html
https://cran.r-project.org/mirrors.html


Statistic

Origin : ‘Statistic’ initially refers to the collection of information by states

– Etymology from the New Latin statisticum and the German words Statistik and Staatskunde
(18th century)

– Counting of demographic and economic data

Modern sense : Collection, visualization, analysis, modelling, interpretation, prediction
of information of all types

– Physics, social science, biology, ... Models for understanding

– Engineering, neuroscience, ... Models for prediction

– Applied mathematics, physics, ... Statistical inference



Context

Data : n observations of characteristics (of individuals, systems, ...) or results of
experiments

.4. ! Sample is not a time series (order of the observations has no importance)

. → Stochastic processes for dynamical systems

Statistic : Mathematical tools allowing to present, resume, explain or predict some
data, and to develop and calibrate models

– Loose of information (data too big to individually analyze each observation)

– Focus on phenomena of interest, tendencies, global performances

Descriptive statistic : Tools describing data with no probabilist assumptions

Parametric statistic : Probabilist assumptions on the distributions of the data
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Statistical packages

Product Description Support
Creation Open Written in

Date Source Scripting

MatLab Platform for 1970’s C++, java Windows, Mac
mathworks.com numerical computing MatLab OS, Linux

SAS Statistical analysis 1974 C Windows,
sas.com system SAS language Linux

SPSS Software package 1968 java Windows, Mac
ibm.com for statistical analysis R, Python OS, Linux

Stata General-purpose 1985 C —
stata.com statistical software ado, Mata

Statistica Advanced analytics 1991 C++ Windows
dell.com software package R, SVB

R Software environment 1993 × C, Fortran Windows, Mac
r-project.org for statistical computing R language OS, Linux

SciLab Open-source alternative 1990 × C, C++, java —
scilab.org to MatLab SciLab

PSPP Open-source alternative 1998 × C —
gnu.org to SPSS Pearl

SciPy Python library for 1992 × C, Fortran —
scipy.org scientific computing Python

And many others ... (see, e.g., Wikipedia : Statistical packages)

http://fr.mathworks.com/
http://www.sas.com/
https://www.ibm.com/de-de/marketplace/statistical-analysis-and-reporting
https://www.stata.com/
https://software.dell.com/products/statistica/
https://www.r-project.org/
http://www.scilab.org
https://www.gnu.org/software/pspp/
https://www.scipy.org/
https://en.wikipedia.org/wiki/List_of_statistical_packages


R software environment1

R is a open source programming language and
environment for statistical computing and graphics

Windows : The terminal — The script (eventual) — The plots (eventual)

Help with R : ?name of a function or help(name of a function)

Implementation of S language — Functional programming

Computation in R consists of sequentially evaluating statements separated by semi-colon or new line, and that can
be grouped using braces

# Variable, vector, operations # Main control structures # Functions

pi*sqrt(10)+exp(4) x=7 exp(2)

2:7 if(x>0) y=0 ?exp

seq(0,1,0.1) for(i in 1:7) exp app=function(x,n)

x=c(1,2,3);y=c(4,5) x=x+i sum(x∧n/factorial(n))
z=c(x,y) while(y>1) exp app(2,1:5)

z∧2;log(z) y=y/2

Integrated development environments for R : RStudio, Jupyter (online), Rattle, Red-R, R Commander, ...

11993, GNU General Public License, r-project.org

https://www.rstudio.com/products/rstudio/
http://jupyter.org/
http://rattle.togaware.com/
http://www.linuxlinks.com/article/20110311191631521/Red-R.html
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://www.r-project.org/


Use of R Source : Rexer Analytics, 2016

Tools used by data scientists
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I R is the most used tool of data scientists and analysts (with tendency to increase)

I R is solely dedicated to statistical computing and graphics

I More general languages such as Python (see, e.g., package scipy) can compute statistical
methods as well, but the implementation in R is generally easier

→ See Python & R codes for common machine learning algorithms at analyticsvidhya.com or R vs
Python at blog.dominodatalab.com

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjy_dap9P7bAhUkKpoKHT0yB4IQFggxMAE&url=http%3A%2F%2Fwww.rexeranalytics.com%2Ffiles%2FRexer_Data_Science_Survey_Highlights_Apr-2016.pdf&usg=AOvVaw0UzAHWBgavA4xd_pGF1M5u
https://www.scipy.org/
https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
https://blog.dominodatalab.com/video-huge-debate-r-vs-python-data-science/
https://blog.dominodatalab.com/video-huge-debate-r-vs-python-data-science/


Overview

Part 1 Descriptive statistics for univariate and bivariate data
Repartition of the data (histogram, kernel density, empirical cumulative distribution function),

order statistic and quantile, statistics for location and variability, boxplot, scatter plot,

covariance and correlation, QQplot

Part 2 Descriptive statistics for multivariate data
Least squares and linear and non-linear regression models, principal component analysis,

principal component regression, clustering methods (K-means, hierarchical, density-based),

linear discriminant analysis, bootstrap technique, artificial neural networks

Part 3 Parametric statistic
Likelihood, estimator definition and main properties (bias, convergence), punctual estimate

(maximum likelihood estimation, Bayesian estimation), confidence and credible intervals,

information criteria, test of hypothesis, parametric clustering

Appendix LATEX plots with R and Tikz
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Data used

Experiments with pedestrians on a ring

→ 11 experiments done for different
density levels

Measurement of :

.

Spacing
(position difference with predecessor)

Speed
(position time-difference)

Acceleration rate
(speed time-difference)

−−−−−−−−−→



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Univariate data

Descriptive statistics for univariate data

(x1, x2, . . . , xn) ∈ Rn

Slide 12 / 192



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Representation of the distribution

Histogram — R : hist(x)

Histogram : Counting of the observations on a regular partition (Ij)j with window δ

∀j, x ∈ Ij , h̃(x) =
n∑
i=1

11Ij (xi), with 11I(x) =

{
1 if x ∈ I
0 otherwise

→ Normalized histogram h(x) = 1
δn h̃(x) for estimation of PDF

Slide 13 / 192
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Representation of the distribution

Kernel density — R : density(x)

Kernel continuous estimation of the PDF

d(x) =
1

nb

n∑
i=1

k((x− xi)/b), with b > 0 the bandwidth

→ Kernel k(.) such that
∫
k(x) dx = 1 and k(x) = k(−x)
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Representation of the distribution

Cumulative distribution function — R : ecdf(x)

Empirical cumulative distribution function (ECDF)

D(x) =
1

n

n∑
i=1

11xi≤x, with 11R =

{
1 if R
0 otherwise

→ Does not depend on a width to calibrate
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Order statistic and quantile

Order statistic and quantile — R : sort(x), quantile(x,·)

Univariate data : x = (x1, x2, . . . , xn) ∈ Rn

(i1, . . . , in) is a permutation of the ID (1, . . . , n) such that xi1 ≤ xi2 ≤ . . . ≤ xin

I k-th order statistic : x(k) = xik , k = 1, . . . , n
→ k is the rank variable : k − 1 observations smaller, n− k + 1 bigger

I α-quantile : qx(α) = x([αn]), α ∈ [0, 1]
→ α% of the data smaller, 1− α% bigger
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Order statistic and quantile

Order statistic and quantile — R : sort(x), quantile(x,·)

Univariate data : x = (x1, x2, . . . , xn) ∈ Rn

(i1, . . . , in) is a permutation of the ID (1, . . . , n) such that xi1 ≤ xi2 ≤ . . . ≤ xin

I k-th order statistic : x(k) = xik , k = 1, . . . , n
→ k is the rank variable : k − 1 observations smaller, n− k + 1 bigger

I α-quantile : qx(α) = x([αn]), α ∈ [0, 1]
→ α% of the data smaller, 1− α% bigger

∗ Unique values if xi1 < xi2 < . . . < xin

∗ Minimum and maximum values are : mini xi = qx(0) = x(1), maxi xi = qx(1) = x(n)

∗ Statistics stable by monotone transformation f :

(
f(x)

)(k) =

{
f
(
x(k))

f
(
x(n−1−k)) and qf(x)(α) =

{
f
(
qx(α)

)
f
(
qfx(1− α)

) if f ↗
if f ↘

Slide 16 / 192



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Statistics for the location

Statistic for the location — R : mean(x), median(x)

Three main statistics for the central position of univariate data x = (x1, x2, . . . , xn) ∈ Rn

I Arithmetic mean value (or mean value) x̄ = 1
n

∑
i xi R : mean(x)

I Median (central observation) medx = x([n/2]) = qx(0.5) median(x)

I Mode (most probable value) modx = supz pdfx(z) x[pdf(x)==max(pdf(x))]
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Part 1. Descriptive statistics for univariate and bivariate data

Statistics for the location

Statistic for the location — R : mean(x), median(x)

Three main statistics for the central position of univariate data x = (x1, x2, . . . , xn) ∈ Rn

I Arithmetic mean value (or mean value) x̄ = 1
n

∑
i xi R : mean(x)

I Median (central observation) medx = x([n/2]) = qx(0.5) median(x)

I Mode (most probable value) modx = supz pdfx(z) x[pdf(x)==max(pdf(x))]

∗ x̄ = medx = modx for uni-modal symmetric repartition of the data

∗ Mean and median solution of : x̄ = arg mina
∑
i(xi − a)2 and medx = arg mina

∑
i |xi − a|

∗ Mean sensible to extreme values, median or mode not : If xi→∞ then x̄→∞ but medx, modx 6→ ∞

∗ Median and mode stable by monotone transform medf(x) = f(medx), modf(x) = f(modx)

But the mean is not :

1
n

∑
i f(xi)

≤ if f is concave

= f(x̄) if f is affine

≥ if f is convex

(Jensen inequality)

Slide 17 / 192



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Statistics for the location

Other statistics for the location

Average Example (1, 2, 3) R

Harmonic x̄H =
(

1
n

∑
i 1/xi

)−1 1.65 1/mean(1/x)

Geometric x̄G = n−1√∏
i xi 1.82 prod(x)∧{1/length(x)}

Arithmetic x̄A = 1
n

∑
i xi 2 mean(x)

Quadratic x̄Q =
√

1
n

∑
i x

2
i 2.16 sqrt(mean(x∧2))

Contraharmonic x̄T =
∑
i x

2
i /
∑
i xi 2.33 mean(x∧2)/mean(x)

→ If xi > 0 for all i, then we have2: x̄H ≤ x̄G ≤ x̄A ≤ x̄Q ≤ x̄T

2We have more generally for xi > 0 and X̄m = m−1
√

1
N

∑
i x
m
i , X̄m ≤ X̄n for all m ≤ n
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Statistics for the variability

Scattering statistics — R : var(x), sd(x), ...

Main statistics used to measure the variability of x = (x1, x2, . . . , xn) ∈ Rn

I Variance varx = 1
n

∑
i(xi − x̄)2

R : var(x)

I Standard-deviation sx =
√
varx sd(x)

I Mean absolute error abs devx = 1
n

∑
i |xi − x̄| mean(abs(x-mean(x)))

I Inter-quartile range IQRx = qx(0.75)− qx(0.25) quantile(x,.75)-quantile(x,.25)

I Max–Min difference maxminx = maxi xi −mini xi max(x)-min(x)
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Main statistics used to measure the variability of x = (x1, x2, . . . , xn) ∈ Rn

I Variance varx = 1
n

∑
i(xi − x̄)2

R : var(x)

I Standard-deviation sx =
√
varx sd(x)

I Mean absolute error abs devx = 1
n

∑
i |xi − x̄| mean(abs(x-mean(x)))

I Inter-quartile range IQRx = qx(0.75)− qx(0.25) quantile(x,.75)-quantile(x,.25)

I Max–Min difference maxminx = maxi xi −mini xi max(x)-min(x)

∗ All these statistics are positive and have the units of the data, excepted the variance (unit to the square)

∗ We have sx ≥ abs devx and maxi xi −mini xi ≥ IQRx

∗ Statistics stable by affine transformation

sax+b = |a| sx,
abs devax+b = |a| abs devx,

IQRax+b = |a| IQRx,
maxminax+b = |a|maxminx,

varax+b = a2varx
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Skewness and Kurtosis

Other statistics for the shape of a distribution

Skewness quantifies the symmetry of the distribution
a R : skewness(x)

Sx =
1

ns3x

∑
i

(xi − x̄)3

I S < 0 : Left asymmetry Large left tail

I S = 0 : Symmetric distribution Similar left and right tails

I S > 0 : Right asymmetry Large right tail
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Part 1. Descriptive statistics for univariate and bivariate data

Skewness and Kurtosis

Other statistics for the shape of a distribution

Skewness quantifies the symmetry of the distribution
a R : skewness(x)

Sx =
1

ns3x

∑
i

(xi − x̄)3

I S < 0 : Left asymmetry Large left tail

I S = 0 : Symmetric distribution Similar left and right tails

I S > 0 : Right asymmetry Large right tail

Kurtosis quantifies whether a distribution is straight or centred

a R : kurtosis(x)

Kx =
1

ns4x

∑
i

(xi − x̄)4

I K < 0 : Tailness distribution Straight distribution

I K > 0 : Distribution with tails Centred distribution
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Statistics for the shape of a distribution : illustrative examples

-2 -1 0 1 2

Mean
-1
0
1 NA

-2 -1 0 1 2

Variance
0.1
0.25
1

-2 -1 0 1 2

Skewness
-2
0
2 NA

-2 -1 0 1 2

Kurtosis
2
3
6



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Boxplot

Boxplot — R : boxplot(x)

Acceleration (m/s2)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

medQ1 Q3mini xi, maxi xi,

xi ≥ Q1-1.5(Q3-Q1) xi ≤ Q3+1.5(Q3-Q1)

Spacing, m

0.0 0.5 1.0 1.5 2.0

Speed, m/s

-0.5 0.0 0.5 1.0 1.5

I 50% of the data into the box — 50% right (resp. left) to the median

I Normal distribution : ≥ 95% of the data into the whiskers

I Different definitions for the whiskers exit (0.01/0.99-quantiles, min/max, ...)
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Bivariate data

Descriptive statistics for bivariate data(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
∈ R2n
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Scatter plot — R : plot(x,y), plot(db)

Scatter plot : The 2D plot of bivariate data
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Covariance and correlation — R : cov(x,y), cor(x,y)

One considers (x, y) = ((x1, y1), . . . , (xn, yn)) some bivariate data

I The covariance quantifies how two variables fluctuate together

covarx,y =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) ∈ R

I The correlation quantifies how two variables linearly fluctuate together
(linear or Pearson correlation coefficient)

corx,y =
covarx,y
√
varxvary

∈ [−1, 1]
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Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Covariance and correlation — R : cov(x,y), cor(x,y)

One considers (x, y) = ((x1, y1), . . . , (xn, yn)) some bivariate data

I The covariance quantifies how two variables fluctuate together

covarx,y =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) ∈ R

I The correlation quantifies how two variables linearly fluctuate together
(linear or Pearson correlation coefficient)

corx,y =
covarx,y
√
varxvary

∈ [−1, 1]

∗ Covariance and correlation tend to zero as n→∞ if x and y are independent

∗ The correlation corx,y = |1| if and only if x and y are linked by an affine relation

∗ Symmetric, covarx,x = varx, covarax+b,cy+d = ac covarx,y , corax+b,cy+d = ±corx,y
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Correlation : Illustrative example yi = (xi + σzi)(1 + σ2)−1/2

corx,y→ cor∞ =
(
1 + σ2)−1/2 as n→∞

-2 -1 0 1 2

-2
-1

0
1

2
corx,y = 1

y

σ = 0
cor∞ = 1

n = 100

-2 -1 0 1 2

-2
-1

0
1

2

corx,y = 0.91

σ = 0.4
cor∞ = 0.93

-2 -1 0 1 2

-2
-1

0
1

2

corx,y = 0.72

σ = 0.8
cor∞ = 0.78

-2 -1 0 1 2

-2
-1

0
1

2

corx,y = 0.57

x

y

σ = 1.2
cor∞ = 0.64

-2 -1 0 1 2

-2
-1

0
1

2
corx,y = 0.42

x

σ = 1.6
cor∞ = 0.53

-2 -1 0 1 2
-2

-1
0

1
2

corx,y = 0.43

x

σ = 2
cor∞ = 0.45



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Spearman correlation coefficient — R : cor(x,y,method=’spearman’)

Pearson correlation coefficient allows to assess linear relationships

→ Spearman correlation coefficient extends the assessment to any monotonic relationships

We denote by (rgx) and (rgy) the ranks of the variables (x, y) = ((x1, y1), . . . , (xn, yn))

I Spearman correlation coefficient

cor
s
x,y = corrx,ry =

covarrx,ry
√
varrxvarry

∈ [−1, 1]

∗ Stable by any monotonic transformation

∗ Insensitive to extreme values

corsx,y =
6
∑
i d

2
i

n(n2−1)
with di= rxi− ryi

if all n ranks are distinct integers
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Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Spearman correlation coefficient — R : cor(x,y,method=’spearman’)

Pearson correlation coefficient allows to assess linear relationships

→ Spearman correlation coefficient extends the assessment to any monotonic relationships

We denote by (rgx) and (rgy) the ranks of the variables (x, y) = ((x1, y1), . . . , (xn, yn))

I Spearman correlation coefficient

cor
s
x,y = corrx,ry =

covarrx,ry
√
varrxvarry

∈ [−1, 1]

∗ Stable by any monotonic transformation

∗ Insensitive to extreme values

corsx,y =
6
∑
i d

2
i

n(n2−1)
with di= rxi− ryi

if all n ranks are distinct integers
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Correlation : Remark 1 — Low correlation 6⇒ independent variables !

.4. ! Extreme values annihilate
Pearson correlation

If yi = xi ∀i 6= i′ and yi′ = γ, then
covarx,y→ 0 as γ→±∞
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corx,y = 0.15 / 0.63

x

y

.4. ! Symmetric non-linear rela-
tions can have correlations nil
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corx,y = -0.07 / -0.03

x

y

see also Wikipedia : Correlation

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/2000px-Correlation_examples2.svg.png
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Correlation : Remark 2 — Correlation is not causality !

Simple cause/consequence relationships have high correlation coefficients

.4. ! However high correlation coefficient 6⇒ Cause/Consequence relationship

→ Both variables can be the consequence of the same cause without being linked, or can have
just by chance similar trends
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Correlation : Remark 2 — Correlation is not causality !

Simple cause/consequence relationships have high correlation coefficients

.4. ! However high correlation coefficient 6⇒ Cause/Consequence relationship

→ Both variables can be the consequence of the same cause without being linked, or can have
just by chance similar trends

Illustrative examples

1. Researchers initially believed that electrical towers impact the health because life expec-
tation and living distance to electrical towers are significantly negatively correlated

 Further analysis shown that this due to the fact that people living around electrical
towers are generally poor, with fewer access to healthcare

2. Shadoks scientist found significant correlations between the number of times someone eats
his birthday cake and having a long life ...

 He deduced that eating his birthday cake is very healthy !

Slide 30 / 192



Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

Covariance and correlation

Some useful properties

Mean value

I Mean of a sum is the sum of the means x+ y = x̄+ ȳ

I Stable for the product if the variables are linearly independent xy = x̄ȳ, if x and y ind.

In general : xy = x̄ȳ + covar(x, y)

Variance and covariance

I Variance stable by sum when the variables are linearly independent

In general : var(x+ y) = var(x) + var(y) + 2covar(x, y)

I Variance of a product is always bigger than the product of the variances

If x and y are linearly independent : var(xy) = var(x)var(y) + var(x)ȳ + var(y)x̄

I In general : var(x) = x2 − x̄2 and covar(x, y) = xy − x̄ȳ
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

QQPlot

QQplot — R : qqplot(x,y)

Correlations quantify existence of linear or monotonic relationship

→ More generally, QQplots (quantile/quantile plots) allow to qualitatively compare
two distributions
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Part 1. Descriptive statistics for univariate and bivariate data

QQPlot

QQplot — R : qqplot(x,y)

Correlations quantify existence of linear or monotonic relationship

→ More generally, QQplots (quantile/quantile plots) allow to qualitatively compare
two distributions

I Affine relationship if the curve
is a straight line

I Distributions are the same
if the curve is x 7→ x

I Different distributions
in the other cases
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Part 1. Descriptive statistics for univariate and bivariate data

QQPlot

QQplot — R : qqplot(x,y)

Correlations quantify existence of linear or monotonic relationship

→ More generally, QQplots (quantile/quantile plots) allow to qualitatively compare
two distributions

I Affine relationship if the curve
is a straight line

I Distributions are the same
if the curve is x 7→ x

I Different distributions
in the other cases
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

QQPlot

QQplot — R : qqplot(x,y)

Correlations quantify existence of linear or monotonic relationship

→ More generally, QQplots (quantile/quantile plots) allow to qualitatively compare
two distributions

I Affine relationship if the curve
is a straight line

I Distributions are the same
if the curve is x 7→ x

I Different distributions
in the other cases
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Introduction to descriptive and parametric statistic with R

Part 1. Descriptive statistics for univariate and bivariate data

QQPlot

QQplot — R : qqplot(x,y)

Correlations quantify existence of linear or monotonic relationship

→ More generally, QQplots (quantile/quantile plots) allow to qualitatively compare
two distributions

I Affine relationship if the curve
is a straight line

I Distributions are the same
if the curve is x 7→ x

I Different distributions
in the other cases
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Summary with R

Univariate data

.
# Histogram

hist(x)

.
# Kernel density

density(x)

.
# Cumulative distribution function

ecdf(x)

.
# Quantile, order statistic

quantile(x,0.5);sort(x)

.
# Mean value, Median

mean(x);median(x)

.
# Variance, standard deviation

var(x);sqrt(var(x))

.
# Boxplot

boxplot(x)

Bivariate data

.
# Scatter plot

plot(x,y)

.
# Covariance

cov(x,y)

.
# Correlation

cor(x,y)

.
# QQplot

qqplot(y,x)



Overview

Part 1 Descriptive statistics for univariate and bivariate data
Repartition of the data (histogram, kernel density, empirical cumulative distribution function),

order statistic and quantile, statistics for location and variability, boxplot, scatter plot,

covariance and correlation, QQplot

Part 2 Descriptive statistics for multivariate data
Least squares and linear and non-linear regression models, principal component analysis,

principal component regression, clustering methods (K-means, hierarchical, density-based),

linear discriminant analysis, bootstrap technique, artificial neural networks

Part 3 Parametric statistic
Likelihood, estimator definition and main properties (bias, convergence), punctual estimate

(maximum likelihood estimation, Bayesian estimation), confidence and credible intervals,

information criteria, test of hypothesis, parametric clustering

Appendix LATEX plots with R and Tikz



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Content

Multivariate data : Large database with observation of several characteristics of individuals

I Exploring analysis Analyse of the distribution of the data and correlation of the
characteristics (Knowledge discovery and data mining)

→ Database for p characteristics : (x1
i , x

2
i , . . . , x

p
i ), i = 1, . . . , n

I Prediction analysis Prediction of certain characteristics (variable to explain) as function
of the others (explanatory variable)

→ Database : (yi, x
1
i , x

2
i , . . . , x

p
i ), i = 1, . . . , n
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Content

Multivariate data : Large database with observation of several characteristics of individuals

I Exploring analysis Analyse of the distribution of the data and correlation of the
characteristics (Knowledge discovery and data mining)

→ Database for p characteristics : (x1
i , x

2
i , . . . , x

p
i ), i = 1, . . . , n

I Prediction analysis Prediction of certain characteristics (variable to explain) as function
of the others (explanatory variable)

→ Database : (yi, x
1
i , x

2
i , . . . , x

p
i ), i = 1, . . . , n

I Linear and non-linear regression Prediction analysis

I Principal component analysis Exploring analysis

I Clustering analysis Exploring analysis

I Bootstrap technique Exploring and prediction analysis

I Artificial neural network Prediction analysis
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The algorithms data scientists are using Source : Rexer Analytics, 2016

0 20% 40% 60% 80%

Regression 70 %
Cluster analysis 50 %

Decision trees 49 %
Time series 35 %

Ensemble methods 25 %
Random forests 25 %

Text mining 24 %
Factor analysis 21 %

Anormaly detection 20 %
Neural nets 19 %

Association rules 18 %
Bayesian methods 16 %

Support Vector Machines 15 %
Proprietary algorithms 14 %

Survival analysis 13 %
Social Network Analysis 12 %

Monte Carlo methods 11 %
Rule induction 10 %
Deep Learning 8 %

Genetic & Evolutionary algorithms 8 %

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjy_dap9P7bAhUkKpoKHT0yB4IQFggxMAE&url=http%3A%2F%2Fwww.rexeranalytics.com%2Ffiles%2FRexer_Data_Science_Survey_Highlights_Apr-2016.pdf&usg=AOvVaw0UzAHWBgavA4xd_pGF1M5u
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https://www.netflixprize.com/


Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Netflix Prize

I Netflix dataset : More than 100 million datestamped movie ratings performed by
anonymous Netflix customers between Dec 31, 1999 and Dec 31, 2005

(about 480 189 users and 17 770 movies)

I Training-test set format : A hold-out set of about 4.2 million ratings was created
consisting of the last nine movies rated by each user3 — Remaining data made
up the training set

I Winner : “BellKor’s Pragmatic Chaos” Blend of hundreds of different models

Test RMSE : 0.856704 (10.06%)

“The Ensemble Team” Blend of 24 prediction models

Test RMSE : 0.856714 (10.06%)

→ BellKor’s defeated The Ensemble by submitting just 20 minutes earlier !

3or fewer if a user had not rated at least 18 movies over the entire period
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DARPA Urban Challenge (2007)

I Driverless car competition on a 96 kilometres (60 mi) urban area course, to be
completed in less than 6 hours (Nov. 3, 2007 in Victorville, California)

I Rules :

– Vehicle must be stock or have a documented safety record

– Vehicle must obey the California state driving laws

– Vehicle must be entirely autonomous, using only the information it detects with its
sensors and public signals such as GPS

– DARPA will provide the route network 24 hours before the race starts

– Vehicles will complete the route by driving between specified checkpoints

– DARPA will provide a file detailing the checkpoints to 5 minutes before the race start

– Vehicles may “stop and stare” for at most 10 seconds

– Vehicles must operate in rain and fog, with GPS blocked

– Vehicles must avoid collision with vehicles and other objects such as carts, bicycles or
traffic barrels

– Vehicles must be able to operate in parking areas and perform U-turns

http://archive.darpa.mil/grandchallenge/
http://archive.darpa.mil/grandchallenge/


Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

DARPA Urban Challenge : Winner

I “Tartan Racing” with Chevrolet Tahoe (Carnegie Mellon University and
Pittsburgh Pennsylvania

I Performed the course in 4:10:20 (averaged speed approximately 22.5 kilometre
per hour)

I Algorithm is a blend of tens statistical prediction models (regression, neural
networks, clustering, etc. . . )
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

DARPA Urban Challenge : Winner

I “Tartan Racing” with Chevrolet Tahoe (Carnegie Mellon University and
Pittsburgh Pennsylvania

I Performed the course in 4:10:20 (averaged speed approximately 22.5 kilometre
per hour)

I Algorithm is a blend of tens statistical prediction models (regression, neural
networks, clustering, etc. . . )

→ In most of the cases, complex multivariate statistic problems are tackled with
combinations of many different statistical algorithms

(Ensemble learning methods)
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Regression models
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Introduction

Multivariate data
(
yi, x

1
i , . . . , x

p
i

)
, i = 1, . . . , n

I n× (p+ 1) matrix : n observations of p+ 1 characteristics

.
y is the variable to explain (output or regressant) Continuous

x1, . . . , xp are the p explanatory variables (inputs or regressors) Discrete or continuous
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Introduction

Multivariate data
(
yi, x

1
i , . . . , x

p
i

)
, i = 1, . . . , n

I n× (p+ 1) matrix : n observations of p+ 1 characteristics

.
y is the variable to explain (output or regressant) Continuous

x1, . . . , xp are the p explanatory variables (inputs or regressors) Discrete or continuous

Model Mα : Rp 7→ R for y as a function of the (x1, . . . , xp)

y = Mα(x1, . . . , xp) + σE

I α are the parameters and σE is a noise (or an error) with amplitude σ (unexplained part)

Example : Multiple linear model Mα(x1, . . . , xp) = α0 + α1x
1 + . . .+ αpx

p

. → p+ 2 parameters : (α0, α1, . . . , αp) and σ — Simple linear regression for p = 1
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares

(or ordinary least squares (OLS), or regression model)

α̃ = arg min
α

n∑
i=1

(
yi −Mα

(
x

1
i , . . . , x

j
i

))2
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Part 2. Descriptive statistics for multivariate data

Regression models

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares

(or ordinary least squares (OLS), or regression model)

α̃ = arg min
α

n∑
i=1

(
yi −Mα

(
x

1
i , . . . , x

j
i

))2

Residuals : Rα(y, x1, . . . , xp) = y −Mα(x1, . . . , xp)

I OLS : Minimisation of the variance of the residuals / Sensible to extreme values

I Estimation of the amplitude of the noise using the empirical residual variance

σ̃
2

=
1

n

n∑
i=1

R
2
α̃(yi, x

1
i , . . . , x

p
i )
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Estimation of the parameters by least squares
Minimisation of the variance of the residuals
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Ri = yi − M(xi)



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

I SST =
∑n
i=1

(
yi − ȳ

)2 Total Sum of Squares

I SSM =
∑n
i=1

(
M̄ −Mα̃(xi)

)2 Sum of Squares of the Model

I SSR =
∑n
i=1

(
yi −Mα̃(xi)

)2 Sum of Squared Residuals

Residuals centred and linearly independent : SST = SSM + SSR

→ Minimizing the variance of residuals maximizes variance explained by the model
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Part 2. Descriptive statistics for multivariate data

Regression models

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

I SST =
∑n
i=1

(
yi − ȳ

)2 Total Sum of Squares

I SSM =
∑n
i=1

(
M̄ −Mα̃(xi)

)2 Sum of Squares of the Model

I SSR =
∑n
i=1

(
yi −Mα̃(xi)

)2 Sum of Squared Residuals

Residuals centred and linearly independent : SST = SSM + SSR

→ Minimizing the variance of residuals maximizes variance explained by the model

Coefficient of determination Explained proportion of the variance

R2 =
SSM

SST
= 1−

SSR

SST
≤ 1

→ Good fit if R2 ≈ 1 — OLS estimation maximizes the R2 — If p = 1 then R2 = cor2
x,y
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R2 : Example
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Linear regression — R : lm(yv x)

Matrix notations of the multiple linear model :

y = Xα,

∣∣∣∣∣∣
y = (y1, . . . , yn)t the variable to explain
X = (1n, x

1, . . . , xp) the matrix of the regressors
α = (α0, . . . , αp)t the parameters
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Part 2. Descriptive statistics for multivariate data

Regression models

Linear regression — R : lm(yv x)

Matrix notations of the multiple linear model :

y = Xα,

∣∣∣∣∣∣
y = (y1, . . . , yn)t the variable to explain
X = (1n, x

1, . . . , xp) the matrix of the regressors
α = (α0, . . . , αp)t the parameters

OLS estimation of the parameters : α̃ = (XtX)−1Xty

.

Formal proof : ∀j = 1, . . . , p, ∂
∂α̃j

∑
i(yi − α̃0 − α̃1x

1
i − . . .− α̃px

p
i )2 = 0

⇔ ∀j = 1, . . . , p,
∑
i x
j
i (yi − α̃0 − α̃1x

1
i − . . .− α̃px

p
i ) = 0

⇔ Xt(y −Xα̃) = 0 ⇔ α̃ = (XtX)−1Xty

Generalized Least Squares (GLS) estimation : α̃G = (XtΩ−1X)−1XtΩ−1y

. → Variance/Covariance matrix Ω for the residuals
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Simple linear regression
Bivariate data (x, y) = ((x1, y1), . . . , (xn, yn)) ∈ R2

The linear regression of y on x is the straight line y = aOLSx+ bOLS

(aOLS, bOLS) = arg min
a,b

∑
i(yi − (axi + b))2 ⇒

{
aOLS =

covarx,y
varx

bOLS = ȳ − aOLSx̄

.

Formal proof : We denote as F (a, b) =
∑
i(yi − (axi + b))2

∂F/∂a = 0 and ∂F/∂b = 0 is

{ ∑
i(−xiyi + xib+ x2

ia) = 0∑
i(yi + xia+ b) = 0

On obtains a =
covx,y
varx

and b = ȳ − ax̄

→ Regressions y/x and x/y are not the same as soon as varx 6= vary but both cross (x̄n, ȳn)
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

I Linear regression with the variables x and f(y), f(x) and y or f(x) and f(y)

a
Example : Exponential model Mα = eα0 · (x1)α1 . . . (xp)αp

→ Linear model with x̃ = log(x) and ỹ = log(y)
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Part 2. Descriptive statistics for multivariate data

Regression models

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

I Linear regression with the variables x and f(y), f(x) and y or f(x) and f(y)

a
Example : Exponential model Mα = eα0 · (x1)α1 . . . (xp)αp

→ Linear model with x̃ = log(x) and ỹ = log(y)
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Linear and non-linear regression

Non-invertible model : Linearisation of the problem and numerical solution

I Iterative algorithms based on the partial derivatives of the model (Jacobian matrix)

I R : nls(model,data) Gauss-Newton or Golub-Pereyra algorithms

I Local minima and divergence problems possible
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Regression models

Linear and non-linear regression

Non-invertible model : Linearisation of the problem and numerical solution

I Iterative algorithms based on the partial derivatives of the model (Jacobian matrix)

I R : nls(model,data) Gauss-Newton or Golub-Pereyra algorithms

I Local minima and divergence problems possible
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Regression models

Multiple linear and non-linear regression with R
y, x1, x2 and x3 are vectors with the same size

Linear least squares estimate

lm(y v x1 + x2 + x3)

I Linear regression of y on x1, x2 and x3

I Linear model (with intercept nil) : lm(y v 0 + x1 + x2 + x3)

Non-linear least squares estimate

nls(y v mod(x,p1,p2,p3,...))

I The model must be at least derivable — Default method : Gauss–Newton

I Partial derivative can be given as input or are estimated numerically

Slide 51 / 192



Regression models : Summary

I Regression models allow to describe relationships between a variable to explain
and explanatory factors

– Parameter estimations by least squares method (sensitivity to extreme values)

– Linear (explicit solution) and non-linear (invertible transformation or numerical
approximation) models

I The variability of the variable to explain can be decomposed as

– Variability explained by the model (explained part)

– Variability of the residuals (non-explained part)

→ The R2 ∈ [0, 1] is the proportion of variable explained by the model allowing to
compare models and to evaluate the quality of the fit

I Linear and non-linear regression are very easy to implement in R

→ lm(·) and nls(·) functions — coef(·) to get the estimations of the coefficients



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Principal Component Analysis
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Introduction

Multivariate data : Observations of p characteristics of n individuals

X =


x1

1 x2
1 . . . xp1

x1
2 x2

2 . . . xp2
...

...
...

x1
n x2

n . . . xpn

 ∈ (Rp)n,

∣∣∣∣ xi = (x1
i , . . . , x

p
i ), i = 1, . . . , n

xj = (xj1, . . . , x
j
n)t, j = 1, . . . , p

→ Variables (x1, . . . , xp) are correlated (inter-dependence of the characteristics)
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Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Introduction

Multivariate data : Observations of p characteristics of n individuals

X =


x1

1 x2
1 . . . xp1

x1
2 x2

2 . . . xp2
...

...
...

x1
n x2

n . . . xpn

 ∈ (Rp)n,

∣∣∣∣ xi = (x1
i , . . . , x

p
i ), i = 1, . . . , n

xj = (xj1, . . . , x
j
n)t, j = 1, . . . , p

→ Variables (x1, . . . , xp) are correlated (inter-dependence of the characteristics)

Specific tools for the visualisation and description of multivariate data

– Scatterplots By coupling the variables — p(p− 1) plots

– Parallel plots, Andrews plot, radar charts Different geometrical representations

– Chernoff faces Human face representation

– Principal component analysis Decomposition in principal components
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Example

Six measurements of Swiss banknotes (n = 200 observations, p = 6)

→ Some are authentic, some are counterfeit

X1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

X2 X3

←
−−
−−
−−
−−
−−
−−
−−
−→

←
−−
−−
−−
−−
−−
−−
−−
−→. X5

. ←−
→

. X4

. ←→

←−−
−−−
−−−
−−−
−−−
−−−
−−−
−−→

X6



Boxplot — R : boxplot(database) Normed data

X1 X2 X3 X4 X5 X6



Correlation coefficients

X1 X2 X3 X4 X5 X6

X1 1.00 0.23 0.15 -0.19 -0.06 0.19
X2 0.23 1.00 0.74 0.41 0.36 -0.50
X3 0.15 0.74 1.00 0.49 0.40 -0.52
X4 -0.19 0.41 0.49 1.00 0.14 -0.62
X5 -0.06 0.36 0.40 0.14 1.00 -0.59
X6 0.19 -0.50 -0.52 -0.62 -0.59 1.00

I X2 and X3 are highly correlated

I X4 and X5 are highly correlated to X3

I X6 is highly correlated to all the variables excepted X1



Scatterplot — R : plot(database)
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Parallel plots — R : parcoord(database) Package : MASS
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Parallel plots — R : parcoord(database) Package : MASS
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Radar charts — R : radarchart(database) Package : fmsb
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Radar charts — R : radarchart(database) Package : fmsb
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Andrews plots — R : andrews(database) Package : andrews

X1 cos(t) +X2 sin(t) +X3 cos(2t) +X4 sin(2t) +X5 cos(3t) +X6 sin(3t)
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Andrews plots — R : andrews(database) Package : andrews

X1 cos(t) +X2 sin(t) +X3 cos(2t) +X4 sin(2t) +X5 cos(3t) +X6 sin(3t)

−π −π/2 0 π/2 π



Chernoff faces — R : faces(database) Package : aplpack

i = 1, . . . , 24

Index Index Index

Index Index Index
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Index Index Index
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Chernoff faces — R : faces(database) Package : aplpack

i = 1, . . . , 24

Index Index Index

Index Index Index
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Index Index Index

Index Index Index



Chernoff faces — R : faces(database) Package : aplpack

i = 1, . . . , 96

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index



Chernoff faces — R : faces(database) Package : aplpack

i = 1, . . . , 96

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index

Index Index Index Index Index Index



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Principal component analysis (PCA)

PCA allows to explore large multivariate data X = (x1
i , . . . , x

p
i ), i = 1, . . . , n

I The variable (x1, . . . , xp) are dependent (otherwise individual analyse !) and continuous
(PCA for categorical data : Multiple correspondence analysis)

I The dimension p is high and the visualisation of the global structure of the data is difficult

I Correlated variable bring same information and could be resumed as linear combinations
(i.e. principal factors) to reduce the dimension of the database
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Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Principal component analysis (PCA)

PCA allows to explore large multivariate data X = (x1
i , . . . , x

p
i ), i = 1, . . . , n

I The variable (x1, . . . , xp) are dependent (otherwise individual analyse !) and continuous
(PCA for categorical data : Multiple correspondence analysis)

I The dimension p is high and the visualisation of the global structure of the data is difficult

I Correlated variable bring same information and could be resumed as linear combinations
(i.e. principal factors) to reduce the dimension of the database

Principle : Reduction of the dimension with uncorrelated linear combinations of
(x1, . . . , xp) maximising the variability

I Geometric interpretation : Projection of the data in orthogonal basis maximising the variance
(i.e. the information – other criteria may be used)

I The 1st component is an optimal representation of the data in one dimension, 1st and 2nd
components optimal representation of the data in two dimensions, and so on
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PCA : Maximisation of the variance
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PCA : Maximisation of the variance
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Example yi = (xi + σzi)(1 + σ2)−1/2

aPCA→ 1 while aOLS→
(
1 + σ2)−1/2 as n→∞
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction of the components

Centred/Standard score transformation x
j
i → x̃

j
i = x

j
i − x̄

j or x
j
i → x̃

j
i =

xji − x̄
j

sxj

I Total variance of the dataset

varX̃ =
1

n

n∑
i=1

p∑
j=1

(
x̃ji
)2

=

p∑
j=1

s2
x̃j

(= p if std. score)

I PHX̃ is the orthogonal projection of the data on subset H and X̃ − PHX̃ is the
projection on a subset orthogonal to H, then (Pythagore)

varX̃ = varPHX̃
+ varX̃−PHX̃

I PCA : Iterative calculation of orthogonal unidimensional subsets (principal
components) maximizing the variance
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction of the components

Iterative construction of the components (PC1, PC2, . . . , PCp) as linear combinati-
ons of the centred data :

I PC1 = X̃u1, u1 such that varPC1 maximal

I PC2 = X̃u2, u2 ⊥ u1 and varPC2 maximal

I PC3 = X̃u3, u3 ⊥
(
u1, u2

)
and varPC3 maximal

.

.

.

I PCp = X̃up, up ⊥
(
u1, . . . , up−1

)
(unique)

Slide 67 / 192
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Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction of the components

Iterative construction of the components (PC1, PC2, . . . , PCp) as linear combinati-
ons of the centred data :

I PC1 = X̃u1, u1 such that varPC1 maximal

I PC2 = X̃u2, u2 ⊥ u1 and varPC2 maximal

I PC3 = X̃u3, u3 ⊥
(
u1, u2

)
and varPC3 maximal

.

.

.

I PCp = X̃up, up ⊥
(
u1, . . . , up−1

)
(unique)

∗ The unit vectors
(
u1, u2, . . . , up

)
form an orthonormal basis of Rp — The last component is fixed

∗ By construction varPC1 ≥ varPC2 ≥ . . . ≥ varPCp and
∑
j varPCj = varX

∗ The first components contain most of the variability of the data when the initial variables are correlated
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction with multivariate data

Variance/covariance matrix of the data Γ (diagonalizable p× p real and symmetric matrix)

Γ =
1

n
X
t
X

∣∣∣∣∣ Γj,j = varx̃j = 1
n

∑
i(x̃

j
i )

2,

Γj,j′ = covar
x̃j ,x̃j

′ = 1
n

∑
i x̃
j
i x̃
j′
i ,

∀j, j′ ∈ {1, . . . , p}

I Principal components PCj = X̃uj described by eigenvectors and ordered
eigenvalues of Γ

Formal proof : X̃v is the projection of the data X on axis subset v ∈ Rp

varX̃v = 1
n

∑
j

∑
j′ vjvj′

∑
i x̃
j
i x̃
j′
i = vtΓv

=
∑
j λj〈v, uj〉

2 ≤ λ1
∑
j〈v, uj〉

2 ≤ λ1 = varPC1

The axis v for which the variance is maximal is u1 (and the variance is varPC1)

→ Then for all v ⊥ u1 (i.e. 〈v, u1〉 = 0), the axis maximizing the variance is u2 etc. . .
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction with bivariate data

First component PC1 = ux̃+
√

1− u2ỹ is the straight line y = aPCAx

with aPCA =

√
1−u2

u
where u is such that

varPC1 ∝
∑
i

(
ux̃i +

√
1− u2ỹi

)2
is maximal

→ One finds aPCA =
vary − varx +

√(
vary − varx

)2
+ 4covar2

x,y

2covarx,y

Slide 69 / 192



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Construction with bivariate data

First component PC1 = ux̃+
√

1− u2ỹ is the straight line y = aPCAx

with aPCA =

√
1−u2

u
where u is such that

varPC1 ∝
∑
i

(
ux̃i +

√
1− u2ỹi

)2
is maximal

→ One finds aPCA =
vary − varx +

√(
vary − varx

)2
+ 4covar2

x,y

2covarx,y

∗ The slope for linear regression is aOLS =
covarx,y
varx

∗ If yi = axi for all i, then aPCA = aOLS = a (since covarxy = a varx and vary = a2varx)

∗ If sx = sy then aPCA = ±1, according to the sign of covarx,y (and aOLS = corx,y)

∗ The second component has the slope −1/aPCA
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Properties of the components

I Maximization of the variability : PC1 best representation in 1D, (PC1, PC2) best
representation in 2D, . . .

I The principal components (PC1, . . . , PCp) are centred :

∀j = 1, . . . , p, ¯PCj =
1

n

n∑
i=1

PCji = 0

I The principal components are not correlated, and with variance (λ1, . . . , λp) :

∀j 6= j
′
, covPCj,PCj′ =

1

n

n∑
i=1

PCjiPCj
′
i = λju

t
juj′ =

{
λj if j = j′

0 if j 6= j′

→ This does not imply that the principal components are independent

Only the linear relations are resumed : Observation of non-linear phenomena

I Interpretation of the components with the correlations to the initial variables

∀j, j′ ∈ {1, . . . , p}, corxj,PCj′ = u
j

j′

√
λj′/sxj
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Practical use of PCA

In practice, the PCA consists in :

1. Calculation of the variances of the principal components to select the number of
new variables to take in consideration

→ Plot of the proportions of variance per component τj = λj/
∑
i λi

2. Analysis of the correlations of the selected components with the initial variables
to interpret the new variables

→ Circle of the correlations plot

3. Analysis of the components (linear and non-linear phenomena)

→ Boxplot, scatter plots or clustering analysis of the new variables
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Example of the notes

Six measurements for the notes

X1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

X2 X3

←
−−
−−
−−
−−
−−
−−
−−
−→

←
−−
−−
−−
−−
−−
−−
−−
−→. X5

. ←−
→

. X4

. ←→

←−−
−−−
−−−
−−−
−−−
−−−
−−−
−−→

X6



Principal components — R : prcomp(database)

Rotations Eigenvectors uj

PC1 PC2 PC3 PC4 PC5 PC6

X1 0.04 -0.01 0.33 -0.56 -0.75 0.10
X2 -0.11 -0.07 0.26 -0.46 0.35 -0.77
X3 -0.14 -0.07 0.34 -0.42 0.53 0.63
X4 -0.77 0.56 0.22 0.19 -0.10 -0.02
X5 -0.20 -0.66 0.56 0.45 -0.10 -0.03
X6 0.58 0.49 0.59 0.26 0.08 -0.05

Component variance Eigenvalues λj

PC1 PC2 PC3 PC4 PC5 PC6

λ 3.00 0.94 0.24 0.19 0.09 0.04

τ 0.67 0.21 0.05 0.04 0.02 0.01



Plot of the proportions of variance per component
Selection of the component number

Variance proportion per component

Principal Components

τ j
=
λ

j
/

∑
i
λ

i

PC1 PC2 PC3 PC4 PC5 PC6

0.
0

0.
2

0.
4

0.
6

0.
8

0.67 0.88 0.93 0.97 0.99 1



Plot of the proportions of variance per component
Selection of the component number

Variance proportion per variable

Initial variables

v
a
r X

j
/

∑
i
v
a
r X

i

X4 X6 X5 X3 X1 X2

0.
0

0.
2

0.
4

0.
6

0.
8

0.46 0.76 0.9 0.94 0.97 1



Plot of the circle of the correlations
Interpretation of the components
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• PC1 Large flag / Short bor-
der — Long / not large note

• PC2 Large flag and down
border / Short up border



Scatter plot of the components
Analysis of the results
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Scatter plot of the components
Analysis of the results
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

PCA with R

Read of the data : data=read.table(’C/...’)

I Principal component analysis with R prcomp(M)

No standard score transformation of the data by default

prcomp(M,scale=T) for PCA on standard scores

I Basic example :

pca=prcomp(data)

pca$rotations

pca$stddev

summary(pca)
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Principal component regression

OLS estimation has interesting properties if regressors are linearly independent

→ Regression on the principal components

I Principal components : p× n matrix PC = X̂S U

X̂ is the centred data (x̂ji → xji − x̄
j for all i, j)

S = Diag(1/sx1 , . . . , 1/sxp ) is the diagonal p× p normalization matrix

U = (u1, . . . , up) is the p× p matrix of unit and orthogonal eigenvectors

I Regression on the components : ŷ = αPC1 PC1 + . . .+ αPCp PCp

α̃PC = (PCtPC)PCty = (SU)−1(XtX)Xty = (SU)−1α̃
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Part 2. Descriptive statistics for multivariate data

Principal Component Analysis

Principal component regression

OLS estimation has interesting properties if regressors are linearly independent

→ Regression on the principal components

I Principal components : p× n matrix PC = X̂S U

X̂ is the centred data (x̂ji → xji − x̄
j for all i, j)

S = Diag(1/sx1 , . . . , 1/sxp ) is the diagonal p× p normalization matrix

U = (u1, . . . , up) is the p× p matrix of unit and orthogonal eigenvectors

I Regression on the components : ŷ = αPC1 PC1 + . . .+ αPCp PCp

α̃PC = (PCtPC)PCty = (SU)−1(XtX)Xty = (SU)−1α̃

∗ The estimation using initial parameters is α̃ = SUα̃PC and α̃0 = ȳ − 1
n
X̂α̃

∗ By shorting the regressors to the first principal components the model still depends on all the initial variables
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Principal component analysis : Summary

PCA is a descriptive tool allowing to reduce the dimension of multivariate data

→ Then use of tools for low dimension data (uni- or bivariate)

The principal components are :

– Linear combinations of the initial variables Linear transformation

– Linearly independent By construction

– Ordered by maximizing the variability Best representation in 1D, 2D, ...

Practical use of PCA :

– Number of components to analyse Proportion of variance per component

– Interpretation of the new variables Circle of the correlations

– Analysis of the components Scatter plot of the components



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Clustering methods
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Introduction

Clustering : Division of heterogeneous data
in subsets (clusters)

→ Observations in the same cluster are more
similar (in some sense) to each other than to those
in other subsets
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Introduction

Clustering : Division of heterogeneous data
in subsets (clusters)

→ Observations in the same cluster are more
similar (in some sense) to each other than to those
in other subsets

Possible distinctions (among others)

.

Supervised / unsupervised : Clusters and cluster number are known / unknown

Strict clustering : Each observation belongs to exactly one cluster

Strict clustering with outliers : Observations can also belong to no cluster (outliers)

Overlapping clustering : Observations may belong to more than one cluster

Fuzzy clustering : Each observation belongs to each cluster according to a certain degree

Hierarchical clustering : Observations of a child cluster also belong to the parent cluster

Centroid clustering : Cluster represented by a centroid (mean value)

Density-based clustering : Clustering based on empirical PDF estimation
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

K-means clustering — R : kmeans(database,K)

Observation (x1, . . . , xn), partition S = {S1, . . . , SK}, mean by cluster (u1, . . . , uK)

I K-means : Unsupervised clustering method based on mean by cluster

– Clustering for given number of clusters K

– (K-medoid : Clustering based on median by cluster

I Minimization of the intra-cluster variability

S = arg min
S

K∑
j=1

∑
i∈Sj

‖xi − uj‖2
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

K-means clustering — R : kmeans(database,K)

Observation (x1, . . . , xn), partition S = {S1, . . . , SK}, mean by cluster (u1, . . . , uK)

I K-means : Unsupervised clustering method based on mean by cluster

– Clustering for given number of clusters K

– (K-medoid : Clustering based on median by cluster

I Minimization of the intra-cluster variability

S = arg min
S

K∑
j=1

∑
i∈Sj

‖xi − uj‖2

∗ Minimizing the intra-variability ⇔ Maximizing the inter-variability (Pythagore)

∗ Partition based on the Voronoi diagram for the means by cluster

∗ Calculation of the global minimum is a NP-complex problem

→ Iterative numerical algorithms (Hartigan-Wong, Lloyd-Forgy, ...) with convergence to local minima
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K-means : Illustrative example with 3 clusters

Step 1

C1

C2

C3

Step 2

C1

C2
C3

Step > 2

C1

C2

C3

∗ Convergence to steady state in 3 steps (the step’s number depends on the initial partition / mean values)

∗ In this example the reached local optimum is the global one



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Agglomerative hierarchical method (AHM) — R : hclust(dist(data))

Hierarchical method Unsupervised clustering based on tree representations

I Top of the tree : One cluster with all the observations

I Bottom of the tree : each observation is a cluster
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Agglomerative hierarchical method (AHM) — R : hclust(dist(data))

Hierarchical method Unsupervised clustering based on tree representations

I Top of the tree : One cluster with all the observations

I Bottom of the tree : each observation is a cluster

Agglomerative iterative method Bottom up approach, by opposition to divisive methods

1. Initialization : Each observation is a cluster

2. Definition of the metric (Euclidean, Manhattan, Mahalanobis, maximum, ...)

3. Definition of a distance between two clusters – Linkage (max, min, mean, centroid, ...)

4. Repeat while Cluster number > 1 {Merge two closest clusters}
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Agglomerative hierarchical method (AHM) — R : hclust(dist(data))

Hierarchical method Unsupervised clustering based on tree representations

I Top of the tree : One cluster with all the observations

I Bottom of the tree : each observation is a cluster

Agglomerative iterative method Bottom up approach, by opposition to divisive methods

1. Initialization : Each observation is a cluster

2. Definition of the metric (Euclidean, Manhattan, Mahalanobis, maximum, ...)

3. Definition of a distance between two clusters – Linkage (max, min, mean, centroid, ...)

4. Repeat while Cluster number > 1 {Merge two closest clusters}

Dendrogram : Tree with observation in x-coordinate and distances in y-coordinate

→ Cut of the dendrogram to determinate the number of clusters
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AHM : Illustrative example

Observations

A

B
C

D
E

F

G

Cluster dendrogram

G
F
D
E
A
B
C

∗ The dendrogram allows to summarize/represent the hierarchical clustering

∗ Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)
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AHM : Illustrative example

Observations

A

B
C

D
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F

G

Cluster dendrogram

G
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∗ The dendrogram allows to summarize/represent the hierarchical clustering

∗ Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Mean-shift clustering — R : ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities

→ Identification of circular cluster (Euclidean distance)

Mean-shift clustering Gradient-method based on kernel density estimate

I Iterative method allowing to detect local maximum of the kernel density

I Method calibrated by a bandwidth (to be given)

I Clustering : Threshold for local maxima (cluster number), kernel density gradient (cluster
belonging)
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Mean-shift clustering — R : ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities

→ Identification of circular cluster (Euclidean distance)

Mean-shift clustering Gradient-method based on kernel density estimate

I Iterative method allowing to detect local maximum of the kernel density

I Method calibrated by a bandwidth (to be given)

I Clustering : Threshold for local maxima (cluster number), kernel density gradient (cluster
belonging)

∗ More flexible method than K-means or AHM, suitable for any type of clusters

∗ Bandwidth not easy to calibrate, adaptive bandwidth often required

→ See also DBSCAN or OPTICS algorithms

Slide 86 / 192



Illustrative examples

K-means AHM

d[
,2

]

Mean-shift

d[
,2

]

Circular clusters : K-means, AHM and mean-shift methods give satisfying results

→ Distance between observations in each clusters smaller than distance between cluster’s means



Illustrative examples

K-means AHM

d[
,2

]

Mean-shift

d[
,2

]

Non-circular clusters : K-means not adapted / AHM and mean-shift more robust

→ Distance between observations in each clusters bigger than distance between cluster’s means



Illustrative examples

K-means AHM

d[
,2

]

Mean-shift

d[
,2

]

.4. ! Clustering methods find clusters even if there is no significant dissimilarities

→ Criteria for significance of inter/intra-variability, dendrogram branch size, bandwidth size, ...



Example of the notes

Detection of the counterfeit notes Method

Miss-classification error K-means AHM Mean-shift

Complete sample 0.005% 0 0.005%

Two first components (PCA) 0.005% 0 0%
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Linear discriminant analysis — R : lda(data,cluster) Package MASS

Clustering : Observations (continuous variables) → Clusters (discrete variable)

Discriminant analysis : Clusters (discrete variable) → Observations (discriminant)

Linear discriminant analysis

I Data :
Continuous explanatory variables (regressors) X1, . . . , Xp

Discrete variable to explain (clusters) Y = 1, . . . , K

I Discriminant variable D as linear combination of the regressors minimizing the sum of the
variances by cluster Y = 1, . . . , K :∣∣∣∣∣ D(α0, . . . , αp) = α0 + α1X

1 + . . .+ αpX
p

with (α0, . . . , αp) = arg minα
∑K
j=1

∑
Yi=j

(
Di − D̄j

)2
→ Best linear combination of the regressors (Xj) for the clustering given by Y
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LDA : Example of the notes
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LDA : Example of the notes
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→ The linear discriminant and the K-means only match when the given clustering in LDA is the
one minimizing the intra-variability



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Clustering methods

Clustering and LDA with R

Clustering methods

I K-means kmean(X,k)

with X the data (vector or matrix) and k the number of clusters

I AHM hclust(dist(X))

– Specification of the metric dist() (see option methods)
– Specification of the linkage with option methods in hclust() function
– Cutting of the dendrogram with cutree(H,k), with H a hclust()-object and k the

number of clusters

I Mean-shift ms(X,h)

with X the data and h the bandwidth — Package LPMC to install

Linear discriminant analysis lda(X) or fda(X)

. Packages MASS or MDA to install
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Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

I Optimisation of intra/inter-variability K-means

→ Fixed number of clusters

I Hierarchy between the observations AHM

→ Hierarchical method — Representation with dendrogram

I Cluster based on kernel density estimate Mean-shift

→ Specification of the bandwidth

I Discriminant variable to determine the belonging to a cluster LDA

→ Linear discriminant analysis (linearly separable clusters)



Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

I Optimisation of intra/inter-variability K-means

→ Fixed number of clusters

I Hierarchy between the observations AHM

→ Hierarchical method — Representation with dendrogram

I Cluster based on kernel density estimate Mean-shift

→ Specification of the bandwidth

I Discriminant variable to determine the belonging to a cluster LDA

→ Linear discriminant analysis (linearly separable clusters)

.4. ! Significance of a clustering to be tested : Intra/inter-variability difference,
branch size of dendrogram, bandwidth size over observation number, ...



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Bootstrap technique

Bootstrap technique
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Bootstrap technique

Introduction

Regression, PCA and clustering allow analyse data and to define and calibrate models

I Single (punctual) estimates of the parameters

Would the estimations be the same for another sample of observations?

In other worlds : Does the estimation depend on the specific values of the sample or hold

they for the whole population ?

I Evaluation of the precision of the estimation, i.e. estimation of the variability of
the estimates
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Bootstrap technique

Introduction

Regression, PCA and clustering allow analyse data and to define and calibrate models

I Single (punctual) estimates of the parameters

Would the estimations be the same for another sample of observations?

In other worlds : Does the estimation depend on the specific values of the sample or hold

they for the whole population ?

I Evaluation of the precision of the estimation, i.e. estimation of the variability of
the estimates

Bootstrap numerical technique

1. Resampling the observations (independent urn sampling with replacement)

2. Analysing the distribution (and the variability) of the estimates on the bootstrap
subsamples
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Bootstrap technique

An illustrative example

A machine produces some components

→ Some of them are operational, some others are defective

→ Estimation the probability p that a component is defective

Two sets of observations p = 0.2

1. Sample 1 : Among 10 observed components, two are defective

2. Sample 2 : Among 100 observed components twenty two are defective

→ Respective estimates : p̃1 = 0.2 and p̃2 = 0.22

Are these estimations precise ?
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Bootstraping — R : sample(data,n,replace=T)
p = 0.2

Sample 1 (n = 10) {0, 0, 1, 0, 1, 0, 0, 0, 0, 0}, p̃1 = 0.2

I Bootstrap subsample 1 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, p̃1
1 = 0

I Bootstrap subsample 2 {0, 0, 0, 0, 1, 0, 0, 0, 1, 0}, p̃2
1 = 0.2

I Bootstrap subsample 3 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, p̃3
1 = 0.1

I . . .

Sample 2 (n = 100) {0, 0, 0, 0, . . . , 1, 0, 0, 0}, p̃2 = 0.22

I Bootstrap subsample 1 {0, 0, 0, 1, . . . , 1, 0, 0, 0}, p̃1
2 = 0.26

I Bootstrap subsample 2 {0, 0, 0, 0, . . . , 0, 1, 0, 0}, p̃2
2 = 0.25

I Bootstrap subsample 3 {1, 0, 0, 0, . . . , 0, 1, 1, 0}, p̃3
2 = 0.17

I . . .



Bootstraping
Histogram of the estimations of the probability p = 0.2 for 1e5 bootstrap subsamples
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Example of the notes
1e3 bootstrap subsamples
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Example of the notes
1e4 bootstrap subsamples
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Bootstrap : Summary

I The Bootstrap method is strictly descriptive, with no assumption on the data
and their distribution

I The method is purely numerical and can be computationally costly

I Bootstrap does not improve punctual estimate but give information on its
variability (i.e. the precision of estimation)

I The approach can be used for any type of estimates (mean, quantile, etc...) but
can be imprecise for distribution queue (high or low quantiles)

I Smooth bootstrap by adding noise onto each resampled observation (sampling
from kernel density estimate of the data)

I Time series : Moving block bootstrap

I Bootstrap with random variable generator : Monte Carlo simulation



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Artificial neural networks
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Understanding/Predictive modelling approaches

Statistical models for understanding Identification of underlying mechanisms

I Insights in the nature and physic of the phenomenon of interest

I Model with few parameters that should be interpretable (parsimony principle)

→ Typically a regression model

→ Limited model complexity determined by statistical tests
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Understanding/Predictive modelling approaches

Statistical models for understanding Identification of underlying mechanisms

I Insights in the nature and physic of the phenomenon of interest

I Model with few parameters that should be interpretable (parsimony principle)

→ Typically a regression model

→ Limited model complexity determined by statistical tests

Statistical models for prediction Machine learning / Data-based algorithms / AI

I Merely an algorithm coming more from the data than from a theory

I Algorithm intentionally complex (very large degrees of freedom/plasticity) with focus on the
predictive ability

→ Typically an artificial neural network

→ Algorithm complexity depends on the data (e.g., its size and structure of its
distribution)
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Understanding/Predictive modelling approaches

INPUT

Explaining variable X

(State of the system
at time t)

OUTPUT

Variable to explain Y

(State of the system
at time t + 1)

Physical models

Y = f(INPUT, a, b, c, d)
with interpretable parameters a, b, c, d

Explicit linear or nonlinear function

Machine learning

Non-explicit nonlinear function



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Artificial neural network

Artificial neural networks (ANN) are numerical networks of connected cells with weigh-
ted activation functions

I The cells are organised as layers (hidden layers) — Generally fully connected

I Important number of parameters (coefficient) — High degrees of freedom

→ Theoretically large ANN can fit any type of relationship

→ Trained with e.g. the backpropagation algorithm (right to left error gradient descent)
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Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Artificial neural network

Artificial neural networks (ANN) are numerical networks of connected cells with weigh-
ted activation functions

I The cells are organised as layers (hidden layers) — Generally fully connected

I Important number of parameters (coefficient) — High degrees of freedom

→ Theoretically large ANN can fit any type of relationship

→ Trained with e.g. the backpropagation algorithm (right to left error gradient descent)

I Feedforward (acyclic networks) or recurrent neural networks (RNN) with cycles

I Convolutional neural networks (CNN) with partially overlapping layers

I Deep neural networks (DNN) with multiple hidden layers

I Long short-term memory (LSTM), time delay neural network (TDNN), and
many others
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Artificial neural network

INPUT OUTPUT

︷ ︸︸ ︷
Hidden layers h



Single node (perceptron)

y =

xp

...

x2

x1

∑

s
(
α0 +

∑
j αjxj

)

Settings

(α0, α1, . . . , αp) : p+ 1 coefficients (to be trained)
s(·) : Activation function (sigmoid)

s



Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Determining the network complexity

The size of the network and its structure depends to the data, its size and its distribution

→ Databased approach by opposition to classical models where the structure and parameters
depend on physical consideration

I Too small networks : Limited prediction, under-use of the data

I Too large networks : Overfitting (bad prediction of new data) or imprecise calibration
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Determining the network complexity

The size of the network and its structure depends to the data, its size and its distribution

→ Databased approach by opposition to classical models where the structure and parameters
depend on physical consideration

I Too small networks : Limited prediction, under-use of the data

I Too large networks : Overfitting (bad prediction of new data) or imprecise calibration

The network with a single node correspond to a linear regression

→ Modelling of complex non-linear relationships with large networks

→ However large networks (too various non-linear possibilities) can be superfluous and provide
undesired overfitting

Example of the notes

I Clear linear discrimination on the plan of the two first components

I Single node (linear regression) sufficient to discriminate the notes, more complex networks
lead to overfitting
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Example of the notes : Subsample 1
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Example of the notes : Subsample 2
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Example of the notes : Subsample 3
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Network complexity : Risk minimization

We denote f(xi; θ) the neural networks with parameter θ for prediction of yi

I Risk minimization

L is a loss function, the risk R = E(L) is the expectation of the loss

→ Empirical risk : Remp = 1
n

∑
i L
(
yi, f(xi; θ)

)
→ Vapnik’s inequality with proba 1− α : R < Remp +

√
d(ln(2n/d)+1)−ln(α/4)

n

with d the Vapnik–Chervonenkis dimension (i.e. the cardinality of the largest set of points
that the algorithm can shatter — i.e. prediction ability)

I No distributional assumptions (only d << n)

I Selection of the network with minimal bound for R (Ratio d/n of interest)

→ Increase of the complexity and prediction ability d as n increases
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Determining the network complexity in practice

Vapnik–Chervonenkis dimension difficult to evaluate in practice

I Empirical approach Trade-off between the fit and robustness of a network

Repeat in a K-Bootstrap loop :

.

Sk is the k-th bootstrap-sampling; partition Sk in two sub-samples S1
k and S2

k

S1
k: Training set used to fit the network

S2
k: Testing set use to estimate prediction error Ek

I Cross-validation bootstrap

I Selection of the network with minimal empirical prediction error

ĒK = 1
K

∑
k Ek
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Example : Prediction of pedestrian dynamics

I Prediction of pedestrian speed v according to the relative position (x̃j , ỹj) and
distance sj to the N = 10 closest neighbors

I Data : Experiments in corridor (C) and bottleneck (B) geometries for various
density levels

I Two modelling approaches

1. Physical model (fundamental diagram) with three parameters

ṽ = FD
(
s̄N , v0, T, `

)
= v0

(
1− e

`−s̄N
v0T

)
2. Feedforward neural network with hidden layers h

ṽ = NN
(
h, s̄N , (x̃j , ỹj , 1 ≥ j ≥ N)

)
I Minimise the mean square error MSE = 1

n

∑
i(vi − ṽi)2
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Prediction of pedestrian dynamics : Data
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Determining the network complexity
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Prediction of pedestrian dynamics

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

Mean spacing, m

Sp
ee

d,
m

/s

Corridor
Bottleneck



Model comparison
Notation : Training/Testing — E.g., C/B : Trained on the corridor experiment, tested on the bottleneck experiment
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Introduction to descriptive and parametric statistic with R

Part 2. Descriptive statistics for multivariate data

Artificial neural networks

Artificial neural networks with R

I Artificial neural networks very easy to train and compute with R

I Package neuralnet to install install.packages(‘neuralnet’)

require(neuralnet)

I Train the network (backpropagation algorithm)

NN=neuralnet(Y∼X1+...+Xp,data=train,hidden=h)

Here Y is the variable to explain, X1,...,Xp are the explanatory variables, train are data

for the training and h are the hidden layers

I Compute the trained network compute(NN,data=test)

Here NN is a trained network and test are data for the testing
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Artificial neural networks : Summary

I Artificial neural network : Oriented graphs with positive weights

– Network with nodes as sigmoid activation function

– Network structure in (hidden) layers — Several types of configurations possible
(feedforward, recurrent, convolutional, etc...)

– Fitting of any transfer function from given input to an output

I Prediction of new observations, missing values, dynamics

– Algorithm coming from the data, trained by backpropagation of a cost or an error

– No physical investigation of the underlying mechanisms of the studied systems

– Prediction of complex (non-linear) relationships in high dimension

I Determining the network complexity

– Network complexity depends on size and distribution of the data

– Empirical setting in training/testing cross-validation



Overview

Part 1 Descriptive statistics for univariate and bivariate data
Repartition of the data (histogram, kernel density, empirical cumulative distribution function),

order statistic and quantile, statistics for location and variability, boxplot, scatter plot,

covariance and correlation, QQplot

Part 2 Descriptive statistics for multivariate data
Least squares and linear and non-linear regression models, principal component analysis,

principal component regression, clustering methods (K-means, hierarchical, density-based),

linear discriminant analysis, bootstrap technique, artificial neural networks

Part 3 Parametric statistic
Likelihood, estimator definition and main properties (bias, convergence), punctual estimate

(maximum likelihood estimation, Bayesian estimation), confidence and credible intervals,

information criteria, test of hypothesis, parametric clustering

Appendix LATEX plots with R and Tikz



The example of the dices
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The example of the dices

Are my dices biased ??

10 rolls

Value
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Observed differences
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The example of the machine

A machine produces some components that can be operational or defective

I Estimation of the probability p that a component is defective by mean value

p̃n =
1

n

n∑
i=1

Xi, with Xi =

{
0 if the component i is operational
1 if the component i is defective

The estimation from a sample with 100 observations is more precise than the estimation
with 10 observations (cf. bootstrap)

Why ? Because the variability of the mean decreases as the observation number increases

I Implicitly this reasoning supposes probabilist assumptions on the convergence of the mean,
its distribution or again existence of expected values

→ Parametric statistic



Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic :

The observations i = 1, . . . , n are independent random
variables with probability distribution function Pθ , θ ∈ Rk

→ Independent and identically distributed (iid) model

I Pθ is general (but can have to satisfy properties) — θ are the parameters of the models

I The data are supposed to be a sample of observations of the distribution Pθ
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic :

The observations i = 1, . . . , n are independent random
variables with probability distribution function Pθ , θ ∈ Rk

→ Independent and identically distributed (iid) model

I Pθ is general (but can have to satisfy properties) — θ are the parameters of the models

I The data are supposed to be a sample of observations of the distribution Pθ

The parametric statistic allows to :

I Fit the parameters θ of a model and evaluate the precision of estimation

I Obtain properties on usual estimators or posterior distribution (Bayesian approach)

I Testing modelling assumptions and compare models
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Example 1 : Pedestrian acceleration

Assumption : Normal distribution N (µ, σ2) f(x) = exp
(
− (x−µ)2
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Example 1 : Pedestrian acceleration

Assumption : Normal distribution N (µ, σ2) f(x) = exp
(
− (x−µ)2

2σ2

)√
2πσ2−1

→ Estimation of µ and σ by µ̃n = x̄ and σ̃n = sx

Pedestrian acceleration (m/s2)
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Example 2 : Pedestrian distance spacing

Assumption : Normal distribution N (µ, σ2) f(x) = exp
(
− (x−µ)2

2σ2

)√
2πσ2−1

→ Estimation of µ and σ by µ̃n = x̄ and σ̃n = sx
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Example 2 : Pedestrian distance spacing

Assumption : Exponential distribution E(λ) f(x) = λe−λx

→ Estimation of expected value λ by λ̃n = x̄

Pedestrian spacing (m)
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Example 2 : Pedestrian distance spacing

Assumption : Gamma distribution G(k, α) f(x) = xk−1e−x/α
Γ(k)αk

→ Estimation of k and α by k̃n = x̄2/varx and α̃n = varx/x̄

Pedestrian spacing (m)
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Convergence of random variables

I Convergence in distribution denoted D

A sequence X1, X2, . . . of real-valued random variables is said to converge in distribution,
or converge weakly, or converge in law to a random variable X if

Dn(x)→D(x) as n→∞ for all x ∈ R at which F is continuous

Here Dn and D are the cumulative distribution functions of Xn and X, respectively.

I Convergence in probability denoted P

X1, X2, . . . converges in probability towards the random variable X if for all ε > 0

P (|Xn −X| ≥ ε)→ 0 as n→∞

I Almost sure convergence denoted a.s.

X1, X2, ... converges almost surely, or almost everywhere, or with probability 1, or strongly
towards X if

P (Xn→X as n→∞) = 1
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Part 3. Parametric statistic

Introduction

Convergence of random variables

I Convergence in distribution denoted D

A sequence X1, X2, . . . of real-valued random variables is said to converge in distribution,
or converge weakly, or converge in law to a random variable X if

Dn(x)→D(x) as n→∞ for all x ∈ R at which F is continuous

Here Dn and D are the cumulative distribution functions of Xn and X, respectively.

I Convergence in probability denoted P

X1, X2, . . . converges in probability towards the random variable X if for all ε > 0
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I Almost sure convergence denoted a.s.

X1, X2, ... converges almost surely, or almost everywhere, or with probability 1, or strongly
towards X if
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Slide 124 / 192



Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Main theorems

Law of large number (LLN)

(X1, . . . , Xn) is a iid sample with expected value E(Xi) = µ <∞. Then

X̄n =
1

n

n∑
i=1

Xi
a.s.→ E(Xi) = µ as n→∞

→ Mean value converges to expected value
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Main theorems

Law of large number (LLN)

(X1, . . . , Xn) is a iid sample with expected value E(Xi) = µ <∞. Then

X̄n =
1

n

n∑
i=1

Xi
a.s.→ E(Xi) = µ as n→∞

→ Mean value converges to expected value

Central limit theorem (CLT)

(X1, . . . , Xn) is a iid sample with E(Xi) = µ <∞ and varXi = σ2 <∞. Then

√
n
X̄n − µ

σ

D→ Z as n→∞, with Z a normal random variable

→ Mean value has asymptotically a normal distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Example of the Bernoulli distribution

In the example machine, the state of a component has a Bernoulli distribution with
expected value µ = p <∞ and variance σ2 = p(1− p) <∞
→ Assumptions of LLN and CLT hold

I The estimation p̃ of the probability p that a component is defective is the mean
value estimate

p̃n =
1

n

n∑
i=1

Xi, with Xi =

{
0 if the component i is operational
1 if the component i is defective

I LLN allows to show that the mean p̃ converges to p as n→∞

I CLT allows to describe the distribution of this estimator and to quantify the
precision of estimation of p by p̃ for fixed n
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Example of the Bernoulli distribution

0 200 400 600 800 1000

Number of observations n

p̃
n

=
1 n

∑
i
X

i

0
0.

1
p

0.
3

0.
4 1 sample



Example of the Bernoulli distribution
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Example of the Bernoulli distribution
Distribution of the mean value — 1e4 samples
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Example of the Bernoulli distribution
Distribution of the mean value — 1e4 samples
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Example of the Bernoulli distribution
Distribution of the mean value — 1e4 samples
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Example of the Bernoulli distribution
Distribution of the mean value — 1e4 samples
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Example of the Cauchy distribution

Cauchy distribution C has PDF f(x) =
(
π(1 + x2)

)−1
with no expected value

.4. ! Conditions for LLN and CLT are not satisfied Mean value does not converge !
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Part 3. Parametric statistic

Introduction

Example of the Cauchy distribution

Cauchy distribution C has PDF f(x) =
(
π(1 + x2)

)−1
with no expected value

.4. ! Conditions for LLN and CLT are not satisfied Mean value does not converge !

Example of Cauchy distribution

ϕi v U([0, π])

Xi v C
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Example of the Cauchy distribution
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Example of the Cauchy distribution
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Example of the Cauchy distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

Likelihood function

The likelihood function Lθ(x) of a set of parameter θ and given data x is

Lθ(x) = P (x | θ) = P (x1, . . . , xn | θ)

I The likelihood is a function of θ for a given sample

I Since the observations are iid, the likelihood is the product Lθ(x) =
n∏
i=1

Pθ(xi)
with Pθ the family of PDF for the (Xi)

I Log-likelihood to manipulate sum instead of product Lθ(x) =

n∑
i=1

log
(
Pθ(xi)

)
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Part 3. Parametric statistic

Introduction

Likelihood function

The likelihood function Lθ(x) of a set of parameter θ and given data x is

Lθ(x) = P (x | θ) = P (x1, . . . , xn | θ)

I The likelihood is a function of θ for a given sample

I Since the observations are iid, the likelihood is the product Lθ(x) =
n∏
i=1

Pθ(xi)
with Pθ the family of PDF for the (Xi)

I Log-likelihood to manipulate sum instead of product Lθ(x) =
n∑
i=1

log
(
Pθ(xi)

)
Normal model :

∣∣∣∣∣∣∣
Lθ(x) = exp

(
−
∑
i(xi−µ)2

2σ2

)(
2πσ2)−n2

Lθ(x) = − 1
2σ2

∑
i(xi − µ)2 − n

2
log
(
2πσ2)
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Normalised likelihood and log-likelihood for the normal distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Introduction

PDF and random number generation with R

.

d{distrib name}(x) Density function

p{distrib name}(q) Distribution function

q{distrib name}(p) Quantile function

r{distrib name}(n) Random number generator

More than 20 distributions available in R

Examples

dnorm(), pnorm(), qnorm(), rnorm() Normal distribution

dunif(), punif(), qunif(), runif() Uniform distribution

dpois(), ppois(), qpois(), rpois() Poisson distribution

...
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Part 3. Parametric statistic

Estimator

Estimator
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Part 3. Parametric statistic

Estimator

Estimator

The parameters θ are calibrated using estimators

→ An estimator θ̃n is a statistic, i.e. a function of the data

θ̃ : Rn 7→ Rk

x 7→ θ̃n(x)
with

∣∣∣∣∣∣
n the number of observations

k the number of parameters

x = (x1, . . . , xn) the observations
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Part 3. Parametric statistic

Estimator

Estimator

The parameters θ are calibrated using estimators

→ An estimator θ̃n is a statistic, i.e. a function of the data

θ̃ : Rn 7→ Rk

x 7→ θ̃n(x)
with

∣∣∣∣∣∣
n the number of observations

k the number of parameters

x = (x1, . . . , xn) the observations

I An estimator θ̃n is a random variable (with mean value, variance, etc. . . )

I The distribution of θ̃n depends on the distribution of the data (and so on θ and
on n)

I An estimator θ̃n must have specific properties to well estimate the parameter
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Part 3. Parametric statistic

Estimator

Bias of an estimator

Eθ θ̃n =
∫
Rn θ̃n(x)

∏
i dPθ(xi) is the expected value of the estimator θ̃n

I The bias B of an estimator θ̃n of θ is the quantity

Bθ(θ̃n) = θ − Eθ(θ̃n)

I An estimator is called unbiased if

Eθ(θ̃n) = θ ∀θ ∈ Rk

I An estimator is asymptotically unbiased if

Eθ(θ̃n)→ θ as n→∞ ∀θ ∈ Rk
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Part 3. Parametric statistic

Estimator

Bias : Examples

Bias for the mean value

I The mean X̄ = 1
n

∑
iXi is a unbiased estimate of the expected value Eµ(Xi) = µ

Eµ(X̄) = Eµ

(
1

n

∑
i

Xi

)
=

1

n

∑
i

EµXi = µ ∀µ
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Part 3. Parametric statistic

Estimator

Bias : Examples

Bias for the mean value

I The mean X̄ = 1
n

∑
iXi is a unbiased estimate of the expected value Eµ(Xi) = µ

Eµ(X̄) = Eµ

(
1

n

∑
i

Xi

)
=

1

n

∑
i

EµXi = µ ∀µ

Bias for the variance

I The empirical variance s2X = 1
n

∑
i(Xi − X̄)2 is asymptotically an unbiased estimate of

the variance varσ(Xi) = σ2

Eσ(s
2
X) = Eσ

(
1

n

∑
i

(Xi − X̄)
2

)
=

1

n

∑
i

Eσ(X
2
i )− Eσ(X̄

2
) =

n− 1

n
σ

2 ∀σ

→ s̃2X = n
n−1 s

2
X = 1

n−1

∑
i(Xi − X̄)2 is an unbiased estimate of the variance
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Part 3. Parametric statistic

Estimator

Error and mean squared error

The error e of an estimator θ̃n of θ is the quantity

eθ(θ̃n) = θ̃n − θ

I The error is a random variable for which the variability is the one of the estimator

I The error is centred if the estimator is unbiased
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Part 3. Parametric statistic

Estimator

Error and mean squared error

The error e of an estimator θ̃n of θ is the quantity

eθ(θ̃n) = θ̃n − θ

I The error is a random variable for which the variability is the one of the estimator

I The error is centred if the estimator is unbiased

The mean squared error (MSE) of an estimator θ̃n of θ is the quantity

MSEθ(θ̃n) = Eθ((θ̃n − θ)2) = varθ(θ̃n) +B2
θ (θ̃n)

I The mean squared error is a deterministic quantity (variance of the error)

I Compromise between bias and variance of the estimator
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Part 3. Parametric statistic

Estimator

Convergence properties

Consistency An estimator θ̃n of θ is called consistent if

θ̃n→ θ as n→∞ ∀θ ∈ Rk

I Necessary MSEθ(θ̃n)→ 0 for a consistent estimator, i.e. at least a
¯

symptotic unbiased and
with asymptotic variance nil

I Property generally obtained from the law of large numbers
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Part 3. Parametric statistic

Estimator

Convergence properties

Consistency An estimator θ̃n of θ is called consistent if

θ̃n→ θ as n→∞ ∀θ ∈ Rk

I Necessary MSEθ(θ̃n)→ 0 for a consistent estimator, i.e. at least a
¯

symptotic unbiased and
with asymptotic variance nil

I Property generally obtained from the law of large numbers

The speed of convergence of a consistent estimator θ̃n of θ is γ > 0 such that

nγ(θ̃n − θ)→Z as n→∞ ∀θ ∈ Rk

I Higher the convergence speed, better is the estimator

I Asymptotic convergence speed of 1/2 given by the central limit theorem
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Part 3. Parametric statistic

Estimator

Example of the uniform distribution

(X1, . . . , Xn) uniform random variables on [0, u] PDF : f(x) = 1
u 11[0,u](x)

→ Two estimators for u

ũ1 = 2X̄n and ũ2 = max
i
Xi

0 u
X1X2 X3 X4X5 X6X7

X̄n 2X̄nmaxi Xi
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Part 3. Parametric statistic

Estimator

Example of the uniform distribution

Estimator ũ1 = 2X̄n = 2
n

∑
iXi

I Expected value : E(ũ1) = 2
n

∑
i E(Xi) = u since E(Xi) = u/2 Unbiased estimator

I Convergence speed : γ = 1/2 CLT : n1/2(ũ1 − u)→Z as n→∞
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Part 3. Parametric statistic

Estimator

Example of the uniform distribution

Estimator ũ1 = 2X̄n = 2
n

∑
iXi

I Expected value : E(ũ1) = 2
n

∑
i E(Xi) = u since E(Xi) = u/2 Unbiased estimator

I Convergence speed : γ = 1/2 CLT : n1/2(ũ1 − u)→Z as n→∞

Estimator ũ2 = maxiXi

I P (ũ2 ≤ x) = P (∩i{Xi ≤ x}) = (x/u)n therefore a PDF for ũ2 is f2(x) = nxn−1u−n

Expected value : E(ũ2) =
∫
xf2 dx = n

n+1u Asymptotically unbiased estimator

I P
(
nγ(ũ2 − u) ≥ ε

)
= 1− (1 + εn−γ/u)n ∼ 1− eεn

1−γ/u→ 0 as n→∞ if γ > 1

Convergence speed : γ = 1
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Part 3. Parametric statistic

Estimator

Example of the uniform distribution

Estimator ũ1 = 2X̄n = 2
n

∑
iXi

I Expected value : E(ũ1) = 2
n

∑
i E(Xi) = u since E(Xi) = u/2 Unbiased estimator

I Convergence speed : γ = 1/2 CLT : n1/2(ũ1 − u)→Z as n→∞

Estimator ũ2 = maxiXi

I P (ũ2 ≤ x) = P (∩i{Xi ≤ x}) = (x/u)n therefore a PDF for ũ2 is f2(x) = nxn−1u−n

Expected value : E(ũ2) =
∫
xf2 dx = n

n+1u Asymptotically unbiased estimator

I P
(
nγ(ũ2 − u) ≥ ε

)
= 1− (1 + εn−γ/u)n ∼ 1− eεn

1−γ/u→ 0 as n→∞ if γ > 1

Convergence speed : γ = 1

.

ũ2 better than ũ1
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Example of the uniform distribution

Number of observations n

0 200 400 600 800 1000

u

ũ1 = 2X̄n

ũ2 = maxi Xi

1 sample



Example of the uniform distribution

Number of observations n

0 200 400 600 800 1000

u

ũ1 = 2X̄n

ũ2 = maxi Xi

20 samples



Example of the uniform distribution
Distribution of the estimators — 1e4 samples

n = 1000

ũ1
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Example of the uniform distribution
Distribution of the estimators — 1e4 samples
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Estimator

Sufficient statistic, Fisher Information and efficient estimate

A statistic θ̃sn(x) is sufficient (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information
as to the value of the parameter (Ronald Fisher)

I Fisher–Neyman factorization criterion : θ̃n sufficient for θ iff ∃g,h, Lθ(x)=h(x)gθ(θ̃n(x))

.
Example of the uniform distribution on [0, u] : Lu(x) = u−n11mini xi≥011maxi xi≤u
→ ũ2 = maxi xi is a sufficient statistic for u but ũ1 = 2x̄n is not

I Blackwell–Rao theorem : For any estimate θ̃n of θ, varθ
(
E(θ̃n|θ̃sn)

)
≤ varθ(θ̃n)

I Fisher information : Ix(θ) = E[(∂ln(Lθ(x))/∂θ)2] quantifies information on θ given by x

→ We have in general I
θ̃(x)

(θ) ≤ Ix(θ) and I
θ̃s(x)

(θ) = Ix(θ) for a sufficient statistic

I Cramer–Rao bound : Under regularity assumptions 1/Ix(θ) ≤ varθ(θ̃n), ∀θ̃n unbiased

→ An estimate is called efficient iff varθ(θ̃n) = 1/Ix(θ)

→ An efficient statistic is necessary sufficient
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Punctual estimation

Punctual estimation
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Introduction

Punctual estimations of parameters are mathematically non-linear optimisation pro-
blems for an objective function∣∣∣∣∣∣∣

fx(θ) : Function to optimize

x are the data (given)

θ are the parameters (to optimize over Rk)

→ Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...)

→ Convergence to local minima
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Introduction

Punctual estimations of parameters are mathematically non-linear optimisation pro-
blems for an objective function∣∣∣∣∣∣∣

fx(θ) : Function to optimize

x are the data (given)

θ are the parameters (to optimize over Rk)

→ Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...)

→ Convergence to local minima

Formulation of the objective function f by

I Least squares Non-parametric approach

I Likelihood Maximum likelihood estimate

I Bayesian approach Posterior distribution for some given prior on the parameters
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Optimisation with R

Punctual estimations (Least squares, MLE and posterior PDF) are optimisation problems for func-

tions f : Rk 7→ R

I Optimisation with R (general case) optim(par,f)

with par the initial values for the parameters and f the function to optimize

.
Exist different optimisation methods (Nelder-Mead, quasi-Newton, ...)

Quasi-Netwon method ‘‘L-BFGS-B’’ allows box constraints for the parameter

Least-squares optimisation with R

I Multilinear models lm(f,X)

I Non-linear models nls(f,X,par)
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

θ̃MLE(x) = arg max
θ∈Rk

Lθ(x)

I Most probable estimation knowing the data of parameter θ for the distribution family

I MLE can be determined by maximizing the log-likelihood
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Part 3. Parametric statistic

Punctual estimation

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

θ̃MLE(x) = arg max
θ∈Rk

Lθ(x)

I Most probable estimation knowing the data of parameter θ for the distribution family

I MLE can be determined by maximizing the log-likelihood

Properties

I MLE not necessary unbiased but is in general asymptotically unbiased

I If it exits a sufficient statistic then MLE depends on it (but MLE not necessary sufficient)

I If it exits a efficient statistic then it is the MLE (regularity assumptions of Cramer-Rao th.)

→ MLE generally better than least squares or moment methods (cf. uniform distribution)
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MLE for the normal distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

MLE for different distributions

• Normal distribution

.
The likelihood of the Gaussian model is Lθ(x) = 1

(
√

2πσ)n
exp

(
−
∑
i(xi − µ)2/2σ2)

MLE of µ and σ solution of
∂Lθ
∂µ

=
∂Lθ
∂σ

= 0 are : µ̃MLE
n = x̄ and σ̃MLE

n = sx

→ Arithmetic mean and empirical variance are the MLE for parameters µ and σ2 of the normal distribution
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Part 3. Parametric statistic

Punctual estimation

MLE for different distributions

• Normal distribution

.
The likelihood of the Gaussian model is Lθ(x) = 1

(
√

2πσ)n
exp

(
−
∑
i(xi − µ)2/2σ2)

MLE of µ and σ solution of
∂Lθ
∂µ

=
∂Lθ
∂σ

= 0 are : µ̃MLE
n = x̄ and σ̃MLE

n = sx

→ Arithmetic mean and empirical variance are the MLE for parameters µ and σ2 of the normal distribution

• Exponential distribution

.
The likelihood of the exponential model is Lλ(x) = λn exp

(
− λ

∑
i xi

)
MLE of λ solution of

∂Lλ
∂λ

= 0 is : λ̃MLE
n = (x̄)−1

→ Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ
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Part 3. Parametric statistic

Punctual estimation

MLE for different distributions

• Normal distribution

.
The likelihood of the Gaussian model is Lθ(x) = 1

(
√

2πσ)n
exp

(
−
∑
i(xi − µ)2/2σ2)

MLE of µ and σ solution of
∂Lθ
∂µ

=
∂Lθ
∂σ

= 0 are : µ̃MLE
n = x̄ and σ̃MLE

n = sx

→ Arithmetic mean and empirical variance are the MLE for parameters µ and σ2 of the normal distribution

• Exponential distribution

.
The likelihood of the exponential model is Lλ(x) = λn exp

(
− λ

∑
i xi

)
MLE of λ solution of

∂Lλ
∂λ

= 0 is : λ̃MLE
n = (x̄)−1

→ Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ

• Uniform distribution

.
The likelihood of the uniform model on [0, u] is Lu(x) =

{
1/un if mini xi ≥ 0, maxi xi ≤ u
0 otherwise

MLE of u is : ũMLE
n = maxi xi (but ∂Lu

∂u
not defined for u = maxi xi)

→ The maximum is the MLE of u for the uniform distribution on [0, u]

Slide 149 / 192



Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

MLE and the linear regression

Linear model with Gaussian noise

yi = (axi + b) + σEi, with (Ei) iid N (0, 1)

I Residuals Ri(a, b) = yi − (axi + b) are supposed normally distributed
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Part 3. Parametric statistic

Punctual estimation

MLE and the linear regression

Linear model with Gaussian noise

yi = (axi + b) + σEi, with (Ei) iid N (0, 1)

I Residuals Ri(a, b) = yi − (axi + b) are supposed normally distributed

Likelihood of the Gaussian linear model is

Lθ(x) = 1
(
√

2πσ)n
exp

(
−
∑
i(yi−(axi+b))

2

2σ2

)
I Likelihood maximal if

∑
i(yi − (axi + b))2 is minimal
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Part 3. Parametric statistic

Punctual estimation

MLE and the linear regression

Linear model with Gaussian noise

yi = (axi + b) + σEi, with (Ei) iid N (0, 1)

I Residuals Ri(a, b) = yi − (axi + b) are supposed normally distributed

Likelihood of the Gaussian linear model is

Lθ(x) = 1
(
√

2πσ)n
exp

(
−
∑
i(yi−(axi+b))

2

2σ2

)
I Likelihood maximal if

∑
i(yi − (axi + b))2 is minimal

→ OLS estimates is MLE when the residuals are Gaussian

(and the empirical standard deviation is the MLE of noise amplitude σ)
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse
posterior distributions conditionally to the data

I Data x are observable random variables with distribution (likelihood) P (x | θ)
I Parameters θ are latent (unknown) random variables with prior distribution P (θ)
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Part 3. Parametric statistic

Punctual estimation

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse
posterior distributions conditionally to the data

I Data x are observable random variables with distribution (likelihood) P (x | θ)
I Parameters θ are latent (unknown) random variables with prior distribution P (θ)

Bayes Theorem assuming P (x), P (θ) > 0

Px(θ) = P (θ |x) =
P (x, θ)

P (x)
=
P (θ)P (x | θ)

P (x)

posterior ∝ prior ∗ likelihood

I Punctual estimations of θ by mode, median or mean of posterior distribution Px(θ)

I Posterior distribution = (normalized) likelihood when prior is uniform

→ MLE is the mode of posterior with non-informative prior

Slide 151 / 192



Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Algorithms to calculate MLE and posterior PDF

MLE or posterior PDF are complex optimization problems having in general no explicit solutions

→ Approximation by iterative algorithms (starting from initial value θ̃(0)
n for the parameters)

• Gibbs sampling Randomized algorithm – MCMC

.
Simulation of θ̃(i)

n as random variables with distribution P
(
θ̃(i−1)
n

)
P
(
x | θ̃(i−1)

n

)
(convergence to posterior distribution)

• Expectation-Maximization (EM) Deterministic algorithm

.
Iterations of maximisation of the parameters θ̃(i)

n of the expected log-likelihood conditionally

to the data and values θ̃(i−1)
n of the parameters at previous step

• Variational Bayesian (VB) Deterministic algorithm

.
Estimation of posterior distribution by minimizing the Kullback-Leibler divergence measure

with parameter previous values θ̃(i−1)
n over a partition of their domain
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Comparing Bayesian, MLE and OLS approaches

I OLS and MLE are close when residuals have compact (normal) distributions

I Bayesian estimate and MLE are close when prior bring few information (straight
distribution) or data is large (concentrated likelihood)

I Bayesian estimate and MLE are different when prior are strong (concentrated
distribution) or data is few (straight likelihood)
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Part 3. Parametric statistic

Punctual estimation

Comparing Bayesian, MLE and OLS approaches

I OLS and MLE are close when residuals have compact (normal) distributions

I Bayesian estimate and MLE are close when prior bring few information (straight
distribution) or data is large (concentrated likelihood)

I Bayesian estimate and MLE are different when prior are strong (concentrated
distribution) or data is few (straight likelihood)

In general, MLE or OLS should be substituted by Bayesian estimates when :

– The dataset is small

– Models are complex (many parameters)

– There are priori on the parameter values

– Dynamical integration of new data
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Summary

Approach Advantage Inconvenient

OLS Easy to use Sensible to extreme values

MLE Many strong and useful properties Asymptotic theory (valid if enough data)

Bayes Flexible / Valid for any sample size Can strongly depend on prior
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Punctual estimation

Summary

Approach Advantage Inconvenient

OLS Easy to use Sensible to extreme values

MLE Many strong and useful properties Asymptotic theory (valid if enough data)

Bayes Flexible / Valid for any sample size Can strongly depend on prior

Generalisation−−−−−−−−−−−−−−−−−−−−−−−→
OLS ←−−−−−−−−−−

Normal residuals
MLE ←−−−−−−−−−

Uniform prior
Bayes
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Precision of estimation
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Introduction

Punctual estimates give no indication on the precision of estimation

.
A fitting can be insignificant when it changes from a sample to another (cf. bootstrap)

Significance of the differences between different populations to statute

→ Evaluation of the precision of estimation with confidence intervals
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Introduction

Punctual estimates give no indication on the precision of estimation

.
A fitting can be insignificant when it changes from a sample to another (cf. bootstrap)

Significance of the differences between different populations to statute

→ Evaluation of the precision of estimation with confidence intervals

CI = [i−, i+] is a confidence interval for θ at the confidence level 1− α if

Pθ(θ ∈ CI) ≥ 1− α, ∀θ ∈ Rk

→ Parameter θ belongs to CI in more than 1− α % of the cases

I Interval of values with a confidence level instead of punctual estimation

I Precision of estimation of deterministic quantities : Size of the CI reduces as n→∞
I Distinct from prediction intervals taking into account the noise to predict new observations
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution
(variability), or on the asymptotic distribution, of an estimator

.
If qθ(u) is the quantile of the estimator θ̃n, then by construction

Pθ
(
θ̃n(x) ∈ [qθ(α/2), qθ(1− α/2)]

)
≥ 1− α, ∀θ ∈ Rk, α ∈ (0, 1)

→ Construction of a CI by extracting θ in the inequalities θ̃n(x) ∈ [qθ(α/2), qθ(1− α/2)]
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Part 3. Parametric statistic

Precision of estimation

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution
(variability), or on the asymptotic distribution, of an estimator

.
If qθ(u) is the quantile of the estimator θ̃n, then by construction

Pθ
(
θ̃n(x) ∈ [qθ(α/2), qθ(1− α/2)]

)
≥ 1− α, ∀θ ∈ Rk, α ∈ (0, 1)

→ Construction of a CI by extracting θ in the inequalities θ̃n(x) ∈ [qθ(α/2), qθ(1− α/2)]

.4. ! Situation generally not accessible since estimator distribution is unknown

I Use of sufficient conditions Tchebychev inequality

I Asymptotic distribution Central limit theorem

I Posterior distribution Bayes approach
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Confidence interval with the Tchebychev inequality

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample, θ = E(Xi), for which exists unbiased

estimator θ̃n of θ such that varθ(θ̃n) ≤ Kn <∞

I Tchebychev inequality : Pθ
(
|θ − θ̃n| > ε

)
≤
Kn

ε2
, ∀ε > 0, θ ∈ R

I For ε =
√
Kn/α, α ∈ (0, 1), we get the symmetric CI for θ :

Pθ

(
θ ∈

[
θ̃n ±

√
Kn/α

]
︸ ︷︷ ︸

CI level α

)
≥ 1− α
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Part 3. Parametric statistic

Precision of estimation

Confidence interval with the Tchebychev inequality

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample, θ = E(Xi), for which exists unbiased

estimator θ̃n of θ such that varθ(θ̃n) ≤ Kn <∞

I Tchebychev inequality : Pθ
(
|θ − θ̃n| > ε

)
≤
Kn

ε2
, ∀ε > 0, θ ∈ R

I For ε =
√
Kn/α, α ∈ (0, 1), we get the symmetric CI for θ :

Pθ

(
θ ∈

[
θ̃n ±

√
Kn/α

]
︸ ︷︷ ︸

CI level α

)
≥ 1− α

∗ CI tends to punctual estimator if variability bound Kn tends to zero

∗ CI tends to R if α→ 0 (θ trivially always belong to CI)

∗ Tchebychev inequality very large : Parameter belongs to the CI in more than 1− α % of the cases

→ Confidence interval for excess
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Asymptotic confidence intervals

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample, θ = E(Xi) and σ2 = var(Xi) <∞

I CLT : Pθ
(√
n

1/n
∑
iXi − θ
σ

∈ [qN (α/2), qN (1− α/2)]
) D→
n→∞

1− α

I Asymptotic symmetric confidence interval for θ :

Pθ

(
θ ∈

[ 1

n

∑
i

Xi ± qN (α/2)
σ
√
n

]
︸ ︷︷ ︸

asymptotic CI level α

)
→ 1− α as n→∞
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Part 3. Parametric statistic

Precision of estimation

Asymptotic confidence intervals

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample, θ = E(Xi) and σ2 = var(Xi) <∞

I CLT : Pθ
(√
n

1/n
∑
iXi − θ
σ

∈ [qN (α/2), qN (1− α/2)]
) D→
n→∞

1− α

I Asymptotic symmetric confidence interval for θ :

Pθ

(
θ ∈

[ 1

n

∑
i

Xi ± qN (α/2)
σ
√
n

]
︸ ︷︷ ︸

asymptotic CI level α

)
→ 1− α as n→∞

∗ CI tends to mean value if σ2 = var(Xi)→ 0 or if n→∞

∗ CI tends to R if α→ 0

∗ Asymptotic CI still valid substituting σ by empirical estimator σx (exact CI : Student)
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CI for the expected value of normal distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Bayesian credible interval using posterior PDF

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample and P (θ) is a prior distribution on the

parameters such that P (θ) > 0

I Bayesian credible interval CIB of θ given by the quantiles qBx of posterior PDF

Pθ
(
θ ∈

[
qBx (α/2), qBx (1− α/2)

]︸ ︷︷ ︸
Bayesian CIB level α

)
≥ 1− α
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Bayesian credible interval using posterior PDF

Assumption : x = (X1, . . . , Xn) is a iid Pθ-sample and P (θ) is a prior distribution on the

parameters such that P (θ) > 0

I Bayesian credible interval CIB of θ given by the quantiles qBx of posterior PDF

Pθ
(
θ ∈

[
qBx (α/2), qBx (1− α/2)

]︸ ︷︷ ︸
Bayesian CIB level α

)
≥ 1− α

∗ The size and symmetry of CIB depends on the posterior distribution that depends on the prior and likelihood

∗ Asymptotic CI converges to the uninformed Bayes CIB with uniform prior
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CI for the expected value of normal distribution
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CI for the expected value of normal distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Asymptotic confidence interval for the variance

I Central limit theorem :
1

σ2

∑
i

(xi − x̄n)2 =
(n− 1)s2?

σ

D→
n→∞

χ2(n− 1)

with χ2(n− 1) the Chi-square distribution with n− 1 degrees of freedom

I Asymptotic confidence interval for the variance parameter σ2

P
(
σ2 ∈

[ (n− 1)s2?
qχ2 (1− α/2)

,
(n− 1)s2?
qχ2 (α/2)

]
︸ ︷︷ ︸

asymptotic CI level α

)
→

n→∞
1− α
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Part 3. Parametric statistic

Precision of estimation

Asymptotic confidence interval for the variance

I Central limit theorem :
1

σ2

∑
i

(xi − x̄n)2 =
(n− 1)s2?

σ

D→
n→∞

χ2(n− 1)

with χ2(n− 1) the Chi-square distribution with n− 1 degrees of freedom

I Asymptotic confidence interval for the variance parameter σ2

P
(
σ2 ∈

[ (n− 1)s2?
qχ2 (1− α/2)

,
(n− 1)s2?
qχ2 (α/2)

]
︸ ︷︷ ︸

asymptotic CI level α

)
→

n→∞
1− α

∗ Do not require to know the expected value

∗ Asymmetric CI since Chi-square distribution is asymmetric
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Asymptotic confidence interval for linear regressions

.
Data (x, y) =

(
(x1, y1), . . . , (xn, yn)

)
Linear model yi = axi + b+ εi

OLS estimates : ã = a+
∑
i xiεi∑

(xi−x̄n)2
and b̃ = b+ x̄n

1
n

∑
i xiεi∑

(xi−x̄n)2

I The statistics
ã− a
sã

and
b̃− b
sb̃

with sã =
√

1
n

∑
i ε

2
i /
∑
i(xi − x̄n)2 and sb̃ =

√
1
n

∑
i ε

2
i

(
1
n +

x̄2
n∑

i(xi−x̄n)2

)
have asymptotically a Student distribution tn−2 with n− 2 degrees of freedom (CLT)

I Asymptotic confidence interval with risk level α for the coefficients a and b of the linear
regression :

ã± qtn−2
(α/2)sã and b̃± qtn−2

(α/2)sb̃
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Confidence and prediction bands for linear regressions

Confidence band R : predict(object,x,’confidence’,level)

Interval of estimation with confidence level 1− α for the mean at a given abscissa x?

ã x? + b̃± qtn−2 (α/2)σ̃

√
1

n
+

(x? − x̄n)2∑
i(xi − x̄n)2
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Confidence and prediction bands for linear regressions

Confidence band R : predict(object,x,’confidence’,level)

Interval of estimation with confidence level 1− α for the mean at a given abscissa x?

ã x? + b̃± qtn−2 (α/2)σ̃

√
1

n
+

(x? − x̄n)2∑
i(xi − x̄n)2

Prediction band R : predict(object,x,’predict’,level)

Interval of prediction of a new observation at x? with confidence level 1− α

ã x? + b̃± qtn−2 (α/2)σ̃

√
1 +

1

n
+

(x? − x̄n)2∑
i(xi − x̄n)2
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Confidence and prediction bands for a linear regression
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Confidence and prediction bands for a linear regression
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Confidence and prediction bands for a linear regression
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Precision of estimation

Confidence interval with R

I Confident interval confint(object,level)

I Confident band predict(object,x,’confidence’,level)

I Prediction band predict(object,x,’predict’,level)

aa

Generic function for any fitted model object

level is the confidence level

Default method assume asymptotic normal distribution for the residuals (asymptotic CI)

Example

object=lm(y∼x)
confint(object,0.95)

predict(object,data.frame(1:100),interval=’confidence’,0.95)
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Information criteria

Information criteria
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Fit of the spacing with exponential distribution

Pedestrian spacing (m)

PD
F

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Observations

Histogram
Exponential PDF



Fit of the spacing with gamma distribution
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Information criteria

Comparison of models

.
MLE and posterior PDF allow to find an optimal fit of the parameters

CI allows to evaluate the precision of this fit

→ No indication on the quality of description of the data using the optimal fit

Example : Better fit of pedestrian spacing using gamma distribution than exponential
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Information criteria

Comparison of models

.
MLE and posterior PDF allow to find an optimal fit of the parameters

CI allows to evaluate the precision of this fit

→ No indication on the quality of description of the data using the optimal fit

Example : Better fit of pedestrian spacing using gamma distribution than exponential

Quality of a model evaluated by information criteria

Akaike Information Criterion (AIC) Bayesian Information Criterion (BIC)

AIC = 2k − 2 ln(L) BIC = k ln(2πn)− 2 ln(L)

I Compromise between goodness of the fit through maximum likelihood L and the complexity
of the model through the parameter number k

I Better model minimizes criteria
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Information criteria for the fit of the spacing
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Information criteria

Likelihood ratio and Bayes factor

I Likelihood ratio D : Ratio of the maximum likelihood

D =
maxθ1 L1(θ1)

maxθ2 L2(θ2)

→ Better fit of the model 1 compared to model 2 if D > 1 or logD > 0
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Information criteria

Likelihood ratio and Bayes factor

I Likelihood ratio D : Ratio of the maximum likelihood

D =
maxθ1 L1(θ1)

maxθ2 L2(θ2)

→ Better fit of the model 1 compared to model 2 if D > 1 or logD > 0

I Bayes factor BF : Ratio of the mean likelihood over given prior f1 and f2

BF =

∫
L1(θ)f1(θ) dθ∫
L2(θ)f2(θ) dθ

→ Better fit of the model 1 when BF > c or logBF > log c
(cf. Jeffreys interpretation)
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Likelihood ratio and Bayes factor for the fit of the spacing
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Test of hypothesis
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Neyman Pearson statistical test

Statistical test : Test of a null hypothesis H0 against an alternative hypothesis on a
sample of iid data

→ The goal is to test the validity of H0 (and not H1 — asymmetric approach)

→ In general, hypothesis are H0 : {θ ∈ Θ0} vs H1 : {θ 6∈ Θ0}, Θ0 ∈ Rk
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Neyman Pearson statistical test

Statistical test : Test of a null hypothesis H0 against an alternative hypothesis on a
sample of iid data

→ The goal is to test the validity of H0 (and not H1 — asymmetric approach)

→ In general, hypothesis are H0 : {θ ∈ Θ0} vs H1 : {θ 6∈ Θ0}, Θ0 ∈ Rk

Four possible configurations :

Reality H0 is true H0 is false
Test

Reject of H0 Error1 OK
No reject of H0 OK Error2

I The probability of occurrence of Error1 is α ∈ (0, 1) Valid for any number of observations

I The probability of occurrence of Error2 tends to zero as n→∞ Power of the test
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H0

diverges under H1

I Construction of a region of rejection Rα of H0

PH0
(Rα(S)) = P (Error1) ≤ α

I Binary response of a test for given α

Reject of H0 if S ∈ Rα
No reject otherwise
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Part 3. Parametric statistic

Test of hypothesis

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H0

diverges under H1

I Construction of a region of rejection Rα of H0

PH0
(Rα(S)) = P (Error1) ≤ α

I Binary response of a test for given α

Reject of H0 if S ∈ Rα
No reject otherwise

P-value : Critical level α? such that

α > α? : Reject of H0

α < α? : No Reject of H0

α? is the probability to observe the value for S under H0 — It is not the probability of H0
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H0

diverges under H1

I Construction of a region of rejection Rα of H0

PH0
(Rα(S)) = P (Error1) ≤ α

I Binary response of a test for given α

Reject of H0 if S ∈ Rα
No reject otherwise

P-value : Critical level α? such that

α > α? : Reject of H0

α < α? : No Reject of H0

α? is the probability to observe the value for S under H0 — It is not the probability of H0

Reject of H0 if α? small (e.g. α?< 0.01) — No conclusion otherwise
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Example of the machine

(X1, . . . , Xn) is a iid sample of Bernoulli distribution with distribution p = 0.2

→ P (Xi = 1) = p, P (Xi = 0) = 1− p, E(Xi) = p and var(Xi) = p(1− p)

Test of the hypothesis H0 : {p = 0.2} VS H1 : {p 6= 0.2}
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Test of hypothesis

Example of the machine

(X1, . . . , Xn) is a iid sample of Bernoulli distribution with distribution p = 0.2

→ P (Xi = 1) = p, P (Xi = 0) = 1− p, E(Xi) = p and var(Xi) = p(1− p)

Test of the hypothesis H0 : {p = 0.2} VS H1 : {p 6= 0.2}

LLN and TCL

Sn =
√
n

X̄n − p
X̄n(1− X̄n)

→
{
N (0, 1) under H0

±∞ under H1

as n→∞

Rejection region Rα(Sn) = |Sn| > ξα such that PH0
(|Sn| > ξα) ≤ α

I ξα = −qα/2 i.e. Rα(Sn) = |Sn| > −qα/2 with q quantile of normal distribution

I P-value : α? = P (|Sn| > sn) =

{
0.5 (in average) if H0 is true

0 as n→∞ if H1 is true
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Example of the machine
H0 : { p = 0.2} VS H1 : { p 6= 0.2} at level α = 0.05
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Example of the machine
H0 : { p = 0.2} VS H1 : { p 6= 0.2} at level α = 0.05
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Some tests with R

Test for Statistic Distribution R

Mean value
√
n
x̄−µ0
sx

Student t.test(x,mu0)

{µ = µ0}

Variance (n− 1)
s2x
σ2

0
Chi–squared —

{σ = σ0}

Mean equality x̄−ȳ(
s2x/n1+s2y/n2

)1/2 Student t.test(x,y)

{µ1 = µ2}

Variance equality s2x/s
2
y Fisher var.test(x,y)

{σ1 = σ2}

Adequacy of dis-
∑
i(Ei−Oi)

2

Ei
Chi–squared chisq.test(x,p)

crete distribution

Adequacy of conti- supz |Dx(z)−Dy(z)| Kolmogorov ks.test(x,y)
nuous distribution

Normality

(∑
i aix

(i)
)2

n s2x
Shapiro-Wilk shapiro.test(x)

Independence
∑
i(nEi,j−EiEj)2

nEiEj
Chi–squared chisq.test(x,y)
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Parametric clustering

Parametric clustering
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Parametric clustering

Parametric clustering (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model Multivariate normal distribution

I Observables : Data x supposed to be iid observations of a multivariate normal distribution f

I Parameters : θk = (µk, σk) of the Gaussian mixture and the proportions of observations
per cluster πk, k = 1, . . . , K

→ Log-likelihood : Lθ(x) =
n∑
i=1

log

(
K∑
k=1

πkf(xi, θk)

)
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Part 3. Parametric statistic

Parametric clustering

Parametric clustering (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model Multivariate normal distribution

I Observables : Data x supposed to be iid observations of a multivariate normal distribution f

I Parameters : θk = (µk, σk) of the Gaussian mixture and the proportions of observations
per cluster πk, k = 1, . . . , K

→ Log-likelihood : Lθ(x) =

n∑
i=1

log

(
K∑
k=1

πkf(xi, θk)

)

Likelihood maximisation according to parameters (µk, σk, πk), k = 1, . . . ,K

1. Local optimum for fixed K through iterative algorithms EM, Gipps sampling, VB, ...

2. Selection of the cluster number K with information criteria AIC, BIC, likelihood ratio, ...
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Parametric clustering

Gaussian mixture model with R : Mclust(data) Package : mclust

Mclust(data,modelNames) : Gaussian mixture for multivariate dataset fitted via

EM algorithm and BIC criterion
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Introduction to descriptive and parametric statistic with R

Part 3. Parametric statistic

Parametric clustering

Gaussian mixture model with R : Mclust(data) Package : mclust

Mclust(data,modelNames) : Gaussian mixture for multivariate dataset fitted via

EM algorithm and BIC criterion

Several shapes for the cluster can be used Option : modelNames

I EII : Spherical, equal volume

I VII : Spherical, varying volume

I EEV : Ellipsoidal, equal volume & shape

I VEV : Ellipsoidal, equal shape

I EVV : Ellipsoidal, equal volume

I VVV : Ellipsoidal, varying volume & shape
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Mclust : Example 1 Spherical clusters

Observations



Mclust : Example 1 Spherical clusters
EII : Spherical, equal volume

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-20

-16 -14

-12

-12

-12

-10

-10

-8
-8

-8

-8

-6

-6

-4
-4

-4

-2

-2

-2

-2

-2

-20

0

log Density Contour Plot



Mclust : Example 1 Spherical clusters
VII : Spherical, varying volume

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-7

-7

-7

-6

-6

-6

-6

-6

-5

-5 -5

-5

-4

-4

-4

-4
-3

-3

-3

-2 -2

-2

-1

-1

-1

0

0

log Density Contour Plot



Mclust : Example 2 Linear clusters

Observations



Mclust : Example 2 Linear clusters
EVV : Ellipsoidal, equal volume

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-30
0-150

-150

-100

-1
00

-50

-50

-50

log Density Contour Plot



Mclust : Example 2 Linear clusters
VEV : Ellipsoidal, equal shape

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-240-160
-140

-1
20-1
00

-100

-80

-80

-60

-60

-60-40

-40

-40

-40

-20

-20

-200

log Density Contour Plot



Mclust : Example 2 See also mixture of linear models here
VVV : Ellipsoidal, varying volume & shape

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-220-140
-140-80

-80

-80-60

-60

-60
-40

-40

-4
0

-40

-20

-20

-20

-20

0

log Density Contour Plot

http://www.di.fc.ul.pt/~jpn/r/EM/EM.html


Mclust : Example 3 Irregular clusters

Observations



Mclust : Example 3 Irregular clusters : Non-parametric clustering
VVV : Ellipsoidal, varying volume & shape

Classification

2 4 6 8

BIC criterion

Number of clusters

Uncertainty

-12

-1
0

-10

-10

-8

-8

-8

-6
-6

-6

-6

-4

-4

-4

-4

-2

-2
0

log Density Contour Plot



Parametric statistic : Summary

I In parametric statistic, the data are supposed to be samples of independent and
identically distributed (iid) random variables

→ Estimation of the parameters of the distributions

– Punctual estimation (Maximizing the likelihood or posterior distribution)

– Precision of the estimation (confidence and credible intervals)

– Goodness of the fit and test of hypothesis (AIC, BIC, Bayes factor, test for mean
value, variance, independence, adequacy to distributions etc. . . )

I The likelihood is a fundamental function in parametric statistic

I Bayesian approaches are useful when we have prior on the parameters, the size
of the sample are small or the models are complex

I Statistics based on square error are accurate when observations are distributed
on ‘compact’ supports (like normal ones)

.4. ! High extreme values can bring disproportionate weights



Summary

Descriptive statistic allows to describe data without modelling assumptions

→ Exploration of the data Knowledge database discovery, data mining, big data

→ Elaboration of data-based models Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models

→ Parameter estimation, confidence interval, information criteria, test of hypothesis

→ Assumptions on the distribution of the data Meaningful parameters



Summary

Descriptive statistic allows to describe data without modelling assumptions

→ Exploration of the data Knowledge database discovery, data mining, big data

→ Elaboration of data-based models Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models

→ Parameter estimation, confidence interval, information criteria, test of hypothesis

→ Assumptions on the distribution of the data Meaningful parameters

R and its numerous packages and help forums is a practical software
for both descriptive and parametric data analysis
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Abbreviations

PDF Probability Density Function

ECDF Empirical Cumulative Distribution Function

iff If and only if

th. Theorem

ind. Independent

iid Independent and identically distributed

OLS Ordinary Least Squares

PCA Principal Component Analysis

lc Linear combination

D Distribution

P Probability

a.s. Almost surely

LLN Law of Large Numbers

CLT Central Limit Theorem

MSE Mean Squared Error

MLE Maximum Likelihood Estimator



Overview

Part 1 Descriptive statistics for univariate and bivariate data
Repartition of the data (histogram, kernel density, empirical cumulative distribution function),

order statistic and quantile, statistics for location and variability, boxplot, scatter plot,

covariance and correlation, QQplot

Part 2 Descriptive statistics for multivariate data
Least squares and linear and non-linear regression models, principal component analysis,

principal component regression, clustering methods (K-means, hierarchical, density-based),

linear discriminant analysis, bootstrap technique

Part 3 Parametric statistic
Likelihood, estimator definition and main properties (bias, convergence), punctual estimate

(maximum likelihood estimation, Bayesian estimation), confidence and credible intervals,

information criteria, test of hypothesis, parametric clustering

Appendix LATEX plots with R and Tikz



Appendix 1 : Plotting with R

R is not only a software for data analysis and mathematical modelling, it is also a
software to get graphics4

→ Basically R allows to produce figures in Metafile, Postscript, PDF, Png, Bmg, TIFF, jpg

→ tikzDevice package allows to get LATEX file (.tex)

Simple plot plot(x,y)

I Options xlab, ylab, main, ...

I Legends legend(‘topright’, ...)

I Specification of the axis label axis(1, ...)

Multiplot

I Figures with 2 lines of 3 plots par(mfrow=c(2,3));plot()...

I Customized position of the plots split.screen(rbind(...));screen(1)...

I Scatterplot of a database plot(data base)

4See demo(graphics), package ‘ggplot2’, CRAN Task View, Google image : R graphics

https://cran.r-project.org/web/views/Graphics.html
https://www.google.de/search?q=R+graphics&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjpyPvam_PLAhWHESwKHZTjAqkQ_AUIBygB&biw=1708&bih=793&dpr=0.8


LATEX plot with R

Script

aa

require(tikzDevice)

tikz(’exemple.tex’,width=5,height=3,standAlone=T)

curve(sin(x)/x,xlim=c(0,20),xlab=’$x$’,ylab=’$f(x)$’,lwd=7,col=rgb(.5,.5,.5))

legend(’topright’,c(’$f(x)=\\frac1x\\sin(x)$’),lwd=7,col=rgb(.5,.5,.5))
dev.off()

0 5 10 15 20

-0
.2

0
.4

1
.0

Example of a LATEX plot with R

x

f
(x

)

f(x) = 1
x

sin(x)
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