Navigationsweiche Anfang

Navigationsweiche Ende

Sprache wählen

Aktuelles

  • Vorlesung TZU WiSe 2018/19
    Die Vorlesung Technische Zuverlässigkeit (TZU) fängt am Mittwoch 16.10 um 14 Uhr im HS 13 an. Die... [mehr]
  • Bachelor- und Masterarbeit
    Das Fachgebiet bietet Themen für Abschlussarbeiten Ihres Bachelor- oder Masterstudiums an. Siehe... [mehr]
zum Archiv ->

Introduction to statistics with R

        

ContextTraining course at Forschungszentrum Juelich                                   
Organisation5 * 3 hours or courses and exercices with R
Material

Slides   Exercices, data and R-scripts

    

Content

Introduction to descriptive and parametric statistic for univariate and multivariate data with the software R.

1.     Descriptive statistics for univariate and bivariate data

  • Repartition of the data (histogram, kernel density, distribution function)
  • Order statistic and quantile
  • Statistics for location and variability, boxplot
  • Scatter plot, QQplot
  • Covariance and correlation
  • Simple linear regression

2.     Descriptive statistics for multivariate data

  • Least squares and multiple linear and non-linear regression models
  • Principal component analysis and principal component regression
  • Clustering methods (K-means, hierarchical, density-based)
  • Linear discriminant analysis
  • Bootstrap technique
  • Artificial neural network

3.     Parametric statistic

  • Notion of Likelihood
  • Estimator: De finition and main properties (bias, convergence)
  • Punctual estimate (maximum likelihood estimation, Bayesian estimation)
  • Con fidence and credible intervals
  • Information criteria
  • Test of hypothesis
  • Parametric clustering

      

Books
TW Anderson and JD Finn. The statistical analysis of data, Springer, 1996.
ID Montgomery and G Runger. Applied Statistics and Probability for Engineers, Wiley, 2010.
P Congdon. Bayesian statistical modelling (2nd edition), Wiley, 2006.

           

Websites and videos