Interacting particle systems
Interacting particle systems are fields in statistical physics. The particles jump in continuous time on a lattice according to, upon other variables, the state of departure and arrival sites. Many traffic models by exclusion, zero-range, random average, or misanthrope processes exist in the literature. They can be seen as extension in continuous time of stochastic cellular automata models. Some processes (e.g. the zero-range) have product-form invariant distributions, making possible analytic descriptions of the model dynamics. Event-based simulation allow computing trajectories in continuous time. In contrast to differential systeme, no discretisation scheme are required for the simulation of the models.
Zero-range traffic model
The jump rate solely depends on the number of particles on the departure site for the zero-range process. The zero-range traffic model represents each site as a vehicle and each particle as a unit of distance spacing. Basically, the speed of a vehicle depends on the distance spacing. The knowledge of the invariante product measure of the process makes possible analytical description of the asymptotic system behavior.
Misantrope traffic model
The jump rate of a particle depends on the number of particles on the departure and arrival sites for the misathrope process. The rate increases as the number on the departure site increases, while it decreases as it increases on the arrival site, hence the terminology misanthrope. In the traffic flow model, a particle is a vehicle while a site is a portion of road. The system is attractive and have an unique invariante distribution that can be approximated by simulation. The process describes classical shock and rarefaction waves for Riemann problems, for which the speeds are given by the Rankine-Hugoniot formula. Indeed, continuous limits of the model are entropic solutions of the classical continuous transport problems.